Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(25): e2307261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225702

RESUMEN

Conventional photodynamic therapy (PDT) of rheumatoid arthritis (RA) faces a dilemma: low-power is insufficient to kill pro-inflammatory cells while high-power exacerbates inflammation. Herein, mitochondrial targeting is introduced in PDT of RA to implement a "less-is-more" strategy, where higher apoptosis in pro-inflammatory cells are achieved with lower laser power. In arthritic rats, chlorine 6-loaded and mitochondria-targeting liposomes (Ce6@M-Lip) passively accumulated in inflamed joints, entered pro-inflammatory macrophages, and actively localized to mitochondria, leading to enhanced mitochondrial dysfunction under laser irradiation. By effectively disrupting mitochondria, pro-inflammatory macrophages are more susceptible to PDT, resulting in increased apoptosis initiation. Additionally, it identifies that high-power irradiation caused cell rupture and release of endogenous danger signals that recruited and activated additional macrophages. In contrast, under low-power irradiation, mitochondria-targeting Ce6@M-Lip not only prevented inflammation but also reduced pro-inflammatory macrophage infiltration and pro-inflammatory cytokine secretion. Overall, targeting mitochondria reconciled therapeutic efficacy and inflammation, thus enabling efficacious yet inflammation-sparing PDT for RA. This highlights the promise of mitochondrial targeting to resolve the dilemma between anti-inflammatory efficacy and inflammatory exacerbation in PDT by implementing a "less-is-more" strategy.


Asunto(s)
Artritis Reumatoide , Liposomas , Mitocondrias , Fotoquimioterapia , Animales , Fotoquimioterapia/métodos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Liposomas/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratas , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología
2.
J Virol ; 97(5): e0036923, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37162335

RESUMEN

Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Línea Celular , Virus de la Fiebre Aftosa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas , ARN/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral , Cricetinae
3.
Support Care Cancer ; 31(7): 392, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37310497

RESUMEN

PURPOSE: Taste changes and vulnerability are commonly co-occurring in oncology patients undergoing chemotherapy. However, few studies explored the association and the inter-individual variability of these two conditions. This study aimed to identify heterogeneous subtypes of vulnerability and taste changes in older cancer patients undergoing chemotherapy, and explore individuals' characteristics and risk factors. METHODS: In this cross-sectional study, the latent class analysis (LCA) was conducted to identify the heterogeneous subgroups of patients with distinct vulnerability and taste change profiles. Differences in sociodemographic and clinical characteristics among the subpopulation were evaluated using parametric and nonparametric tests. Multinomial logistic regression was performed to investigate predictors of taste change-vulnerability subgroup classification. RESULTS: Three subgroups of those older cancer survivors were identified from the LCA: Class 1 (27.5%)-"Moderate taste change and low vulnerability", Class 2 (29.0%)-"Low taste change and moderate vulnerability", Class 3 (43.5%)-"High taste change and high vulnerability". 98.9% of Class 3 reported taste changes and 54.0% reported vulnerability. Results from multinomial logistic regression indicated that patients in Class 3 were more likely to report experiencing mouth dryness and high blood pressure, and have received more than 3 cycles of chemotherapy. CONCLUSION: The findings could provide new insights into the association between taste changes and vulnerability in older cancer adults receiving chemotherapy. Identifying different latent classes of taste changes and vulnerability would be helpful for developing interventions tailored to the heterogeneous survivors.


Asunto(s)
Neoplasias , Gusto , Adulto , Humanos , Anciano , Análisis de Clases Latentes , Estudios Transversales , Neoplasias/tratamiento farmacológico , Oncología Médica
4.
Biomed Eng Online ; 19(1): 18, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245476

RESUMEN

BACKGROUND: The remineralization approach mechanically occludes the exposed dentinal tubules mechanically, reduces the permeability of dentinal tubules and eliminates the symptoms of dentin hypersensitivity. The aim of the present study was to investigate the remineralization of demineralized dentin slices using CPP-ACP combined with TPP, and the research hypothesis was that CPP-ACP combined with TPP could result in extrafibrillar and intrafibrillar remineralization of dentin. METHODS: Demineralized dentin slices were prepared and randomly divided into the following groups: A (the CPP-ACP group), B (the CPP-ACP + TPP combination group), C (the artificial saliva group), D (the negative control group), and E (the positive control group). Dentin slice samples from groups A, B and C were remineralized and the remineralization effect was evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). RESULTS: Treatment with CPP-ACP combined with TPP occluded the dentinal tubules and resulted in remineralization of collagen fibrils. The hydroxyapatite crystals formed via remineralization were found to closely resemble the natural dentin components. CONCLUSION: CPP-ACP combined with TPP has a good remineralization effect on demineralized dentin slices.


Asunto(s)
Caseínas/farmacología , Dentina/efectos de los fármacos , Dentina/metabolismo , Minerales/metabolismo , Polifosfatos/farmacología , Interacciones Farmacológicas , Humanos
5.
Exp Cell Res ; 384(1): 111593, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487508

RESUMEN

INTRODUCTION: Periodontal ligament stem cells (PDLSCs) are vital for the regeneration of periodontal tissues. Potassium dihydrogen phosphate (KH2PO4) has recently been applied as a component of the mineralization inducing medium (MM), which can be used to induce osteogenic differentiation of dental stem cells. However, whether KH2PO4 has effects on PDLSCs has not been studied. MATERIALS AND METHODS: PDLSCs were isolated by magnetic activated cell sorting and cultured. Alkaline phosphatase (ALP) activity and ALP protein expression of PDLSCs treated with different concentrations of KH2PO4 were examined to make sure the optimal concentration of KH2PO4 for the following experiments. The effects of KH2PO4 on the proliferation and differentiation of PDLSCs were investigated by flow cytometry, cell counting kit-8 assay, alizarin red staining, real-time RT-PCR, and Western blot. The involvement of nuclear factor kappa B (NF-κB) pathway in KH2PO4-treated PDLSCs was analyzed by Western blot and alizarin red staining. RESULTS: ALP activity assay and ALP protein expression examination revealed that 1.8 mmol/L KH2PO4 was the optimal concentration for the induction of hPDLSCs by KH2PO4. The proliferation and mineralization capacity of PDLSCs treated with KH2PO4 were enhanced as compared with the control group. PDLSCs treated with KH2PO4 showed an improved proliferation capacity in logarithmic growth phase at day 7. As PDLSCs were treated with KH2PO4, the expression of odonto/osteogenic markers (OCN/OCN, DSP/DSPP, OSX/OSX, RUNX2/RUNX2, and ALP/ALP) in cells were up-regulated at day 3 or 7. Moreover, the expression of IκBα in cytoplasm was down-regulated, along with an increased expression of p-P65 in cytoplasm and an up-regulated expression of P65 in nucleus. When treated with BMS345541 (the specific NF-κB inhibitor), the odonto/osteogenic differentiation of KH2PO4-treated PDLSCs was significantly attenuated. CONCLUSION: KH2PO4 can improve the proliferation and odonto/osteogenic differentiation capacity of PDLSCs via NF-κB pathway, and thus represents a potential target involved in the regeneration of periodontium for clinical treatments.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , FN-kappa B/metabolismo , Ligamento Periodontal/efectos de los fármacos , Fosfatos/farmacología , Compuestos de Potasio/farmacología , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Adolescente , Fosfatasa Alcalina/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Niño , Humanos , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/metabolismo , Células Madre/metabolismo
6.
J Pept Sci ; 25(2): e3144, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30588703

RESUMEN

Mitochondrion plays an important role in executing cell programmed death pathway. Therefore, drugs designed to target mitochondria are supposed to make superior contributions to cancer therapy. However, the problem that drugs or drug delivery systems being sequestrated in endosomes/lysosomes needs to be solved for effective drug delivery. Here, mitochondrial targeting and nonendocytic cell entry peptide SS20 modified HPMA copolymer (P-FITC-SS20) was synthesized. With SS20 peptide modification, the uptake behavior of HPMA copolymers changed remarkably compared with unmodified ones. The internalization of P-FITC-SS20 was not influenced by endocytic inhibitors and temperature. Further, the internalized copolymers were not trapped in endosomes/lysosomes. Although cellular uptake of HPMA copolymer was decreased after SS20 peptide modification, SS20 peptide significantly improved mitochondrial accumulation of HPMA copolymers due to its outstanding mitochondrial targeting ability. Moreover, owing to lower susceptibility to macrophagocyte in blood, P-SS20-Cy5 showed longer blood circulation time and enhanced tumor accumulation. The current study validated that SS20 peptide modification is a promising strategy for mitochondrial targeting drug delivery systems and can be further applied to mitochondria associated diseases to improve therapeutic efficacy.


Asunto(s)
Endocitosis , Metacrilatos/farmacocinética , Mitocondrias/metabolismo , Péptidos/farmacocinética , Polímeros/farmacocinética , Animales , Células Cultivadas , Endocitosis/efectos de los fármacos , Células HeLa , Humanos , Metacrilatos/síntesis química , Metacrilatos/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Péptidos/química , Polímeros/síntesis química , Polímeros/química , Células RAW 264.7 , Distribución Tisular
7.
Mol Pharm ; 13(9): 3069-79, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27417390

RESUMEN

As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.


Asunto(s)
Citoplasma/metabolismo , Metacrilatos/química , Microtúbulos/metabolismo , Polímeros/química , Transporte Activo de Núcleo Celular/fisiología , Apoptosis/fisiología , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Microtúbulos/química
8.
Anal Bioanal Chem ; 408(21): 5779-5787, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27342794

RESUMEN

Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 µA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Plomo/análisis , Nanofibras/química , Polímeros/química , Pirroles/química , Cationes Bivalentes/análisis , Límite de Detección , Nanofibras/ultraestructura , Transistores Electrónicos
9.
BMC Cardiovasc Disord ; 16: 21, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26811249

RESUMEN

BACKGROUND: There is still no standard large animal model for evaluating the effectiveness of potential thrombolytic therapies. Here, we aimed to develop a new beagle model with ST-elevation myocardial infarction (STEMI) by injecting autologous emboli with similar components of coronary thrombus. METHODS: 18 male beagles were included and divided into three groups: red embolus group (n = 6), white embolus group (n = 6) or white embolus + rt-PA group (n = 6). Autologous emboli were infused into the mid-distal region of the left anterior descending coronary artery. The composition of embolus was examined by scanning electron microscope (SEM). Coronary angiography was performed to verify the status of embolism. Myocardial infarct size was measured by 2, 3, 5- triphenyltetrazolium chloride (TTC) staining. RESULTS: Red thrombus was characteristic of loose reticular structure of erythrocytes under SEM, while the white embolus had compacted structure that mainly consisted of a dense mass of fibrin. Coronary angiography showed the recanalization rate was 2/6 in the red embolus group versus 0/6 in the white embolus group in three hours after occlusion. Arrhythmia, resolution of ST-segment elevation and lower T wave on the electrocardiogram appeared in the red embolus group but not in the white embolus group. Another six dogs with white thrombi were treated with rt-PA. Five out of six dogs exhibited coronary recanalization after two hours of therapy, compared to zero dogs without rt-PA treatment. The size of myocardial infarction in rt-PA group reduced significantly compared with white embolus group using TTC staining method. CONCLUSIONS: The white embolism model was more convenient experimentally and had a higher uniformity, stability and success rate. The major innovation of our study is that we applied fibrin-rich white thrombi to establish beagle model possessing features of clinically observed coronary thrombi in time window of intravenous thrombolysis of STEMI. This model can be used to evaluate new thrombolytic drugs for the treatment of STEMI.


Asunto(s)
Trombosis Coronaria/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibrinolíticos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Terapia Trombolítica/métodos , Activador de Tejido Plasminógeno/uso terapéutico , Animales , Celulosa , Angiografía Coronaria , Trombosis Coronaria/diagnóstico por imagen , Trombosis Coronaria/patología , Perros , Electrocardiografía , Eritrocitos , Fibrina , Masculino , Microscopía Electrónica de Rastreo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/patología
10.
Mol Pharm ; 11(10): 3251-60, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-24955652

RESUMEN

Prostate carcinoma is the second leading cause of cancer-related deaths. Increased expression of membrane-bound galectin-3 by prostate carcinoma cell has been found to correlate with more poorly differentiated and increased metastatic potential. In the present study, different amount of galectin-3-binding peptide, G3-C12 (the sequence ANTPCGPYTHDCPVKR), was attached to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers as targeting moiety. The results of qPCR and competitive binding test indicated that the expression level of galectin-3 in two metastatic prostate carcinoma cell lines (PC-3 and DU145 cells) could be significantly suppressed by the addition of G3-C12-modified HPMA copolymers (PG1 and PG2), demonstrating the high affinity of PG1 and PG2 to galectin-3. Due to the multivalent effects of moieties, the uptake of copolymers was remarkably enhanced with the increasing amount of conjugated G3-C12 peptide. A higher internalization of PG1 and PG2 occurred in PC-3 cells via caveolin- and clathrin-mediated endocytosis, whereas a clathrin-mediated uptake process was involved in DU145 cells. The in vivo biodistribution and pharmacokinetics of nonmodified ((131)I-pHPMA) and G3-C12-modified ((131)I-PG1 and (131)I-PG2) copolymers were estimated on a well-established mice model bearing PC-3 xenografts by (131)I-SPECT-imaging. Higher tumor accumulation of (131)I-PG1 (1.60 ± 0.08% ID/g, p < 0.05) and (131)I-PG2 (1.54 ± 0.06% ID/g, p < 0.05) was observed compared with (131)I-pHPMA (1.19 ± 0.04% ID/g) at 2 h post-intravenous injection. Although the amount of conjugated G3-C12 peptide performed a remarkable in vitro effect on the affinity and internalization of HPMA copolymers to the galectin-3 overexpressed prostate carcinoma cells, the molecular weight and ligand modification all play important roles on their in vivo tumor accumulation.


Asunto(s)
Acrilamidas/química , Péptidos/química , Polímeros/química , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C
11.
J Cancer Res Ther ; 20(2): 684-694, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687941

RESUMEN

OBJECTIVES: Gypenoside (Gyp) is easily degraded in the gastrointestinal tract, resulting in its low bioavailability. We aimed to develop a tumor-targeted Gyp nanodrug delivery system and to investigate its antitumor effect in vitro. MATERIALS AND METHODS: We used Gyp as the therapeutic drug molecule, mesoporous silica (MSN) and liposome (Lipo) as the drug carrier and protective layers, and aptamer SYL3C as the targeting element to establish a tumor-targeted nanodrug delivery system (i.e., SYL3C-Lipo@Gyp-MSN). The characteristics of SYL3C-Lipo@Gyp-MSN were investigated, and its drug release performance, cell uptake, and antitumor activity in vitro were evaluated. RESULTS: A tumor-targeted Gyp nanodrug delivery system was successfully prepared. The SYL3C-Lipo@Gyp-MSN was spherical or ellipsoidal; had good dispersion, which enabled it to specifically target and kill the liver tumor cell HepG2; and effectively protected the early leakage of Gyp. CONCLUSIONS: We have established a tumor-targeted nanodrug delivery system that can target and kill liver cancer cells and may provide a strategy for preparing new nanodrug-loaded preparations of traditional Chinese medicine.


Asunto(s)
Gynostemma , Liposomas , Humanos , Gynostemma/química , Liposomas/química , Células Hep G2 , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Dióxido de Silicio/química , Liberación de Fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Nanopartículas/química , Nanopartículas/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Sistema de Administración de Fármacos con Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación
12.
Int J Biol Macromol ; 267(Pt 1): 131291, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583839

RESUMEN

Bacterial cellulose (BC) hydrogels are promising medical biomaterials that have been widely used for tissue repair, wound healing and cartilage engineering. However, the high water content of BC hydrogels increases the difficulty of storage and transportation. Moreover, they will lose their original hydrogel structure after dehydration, which severely limits their practical applications. Introducing the bio-based polyelectrolytes is expected to solve this problem. Here, we modified BC and combined it with quaternized chitosan (QCS) via a chemical reaction to obtain a dehydrated dialdehyde bacterial cellulose/quaternized chitosan (DBC/QCS) hydrogel with repeated swelling behavior and good antibacterial properties. The hydrogel can recover the initial state on the macro scale with a swelling ratio over 1000 % and possesses excellent antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with a killing rate of 80.8 % and 81.3 %, respectively. In addition, the hydrogel has excellent biocompatibility, which is conducive to the stretching of L929 cells. After 14 d of in vivo wound modeling in rats, it was found that the hydrogel loaded with pirfenidone (PFD) could promote collagen deposition and accelerate wound healing with scar prevention. This rehydratable hydrogel can be stored and transported under dry conditions, which is promising for practical applications.


Asunto(s)
Antibacterianos , Celulosa , Escherichia coli , Hidrogeles , Staphylococcus aureus , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Staphylococcus aureus/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Celulosa/análogos & derivados , Escherichia coli/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Ratones , Línea Celular , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
13.
J Sport Health Sci ; 12(5): 619-629, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36921692

RESUMEN

BACKGROUND: Traumatic brain injury can be caused by head impacts, but many brain injury risk estimation models are not equally accurate across the variety of impacts that patients may undergo, and the characteristics of different types of impacts are not well studied. We investigated the spectral characteristics of different head impact types with kinematics classification. METHODS: Data were analyzed from 3262 head impacts from lab reconstruction, American football, mixed martial arts, and publicly available car crash data. A random forest classifier with spectral densities of linear acceleration and angular velocity was built to classify head impact types (e.g., football, car crash, mixed martial arts). To test the classifier robustness, another 271 lab-reconstructed impacts were obtained from 5 other instrumented mouthguards. Finally, with the classifier, type-specific, nearest-neighbor regression models were built for brain strain. RESULTS: The classifier reached a median accuracy of 96% over 1000 random partitions of training and test sets. The most important features in the classification included both low- and high-frequency features, both linear acceleration features and angular velocity features. Different head impact types had different distributions of spectral densities in low- and high-frequency ranges (e.g., the spectral densities of mixed martial arts impacts were higher in the high-frequency range than in the low-frequency range). The type-specific regression showed a generally higher R2 value than baseline models without classification. CONCLUSION: The machine-learning-based classifier enables a better understanding of the impact kinematics spectral density in different sports, and it can be applied to evaluate the quality of impact-simulation systems and on-field data augmentation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Aprendizaje Automático , Humanos , Fenómenos Biomecánicos , Cabeza , Protectores Bucales
14.
Nanoscale ; 14(12): 4573-4587, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35253829

RESUMEN

Pre-metastatic initiation is essential in tumor metastasis, and the inhibition of it could prevent the spread of cancers to distant organs. Both tumor-associated macrophages (TAMs) and the epithelial-mesenchymal transition (EMT) play an important role in the pre-metastatic initiation stage. Herein, a liposome-based combination strategy which involves doxorubicin-loaded liposomes (Lip-Dox) and PI3K inhibitor-loaded liposomes (Lip-LY) was developed to simultaneously regulate tumor cells and TAMs for inhibiting pre-metastatic initiation. In tumor cells, Lip-LY sensitized cells to Lip-Dox treatment and inhibited the EMT process which was promoted by succinate, further mitigating succinate-induced migration and invasion of 4T1 cells. In TAMs, Lip-LY could efficiently inhibit the polarization of TAMs and reduce the percentage of M2 TAMs, so as to exhibit synergistic effects with Lip-Dox in TAM-induced metastasis. As a result, the combination treatment successfully reduced the lung metastasis of 4T1 bearing BALB/c mice by destroying metastatic tumor cells and inhibiting pre-metastatic initiation with decreased metastasis-associated protein expression. Overall, our work provided a simple and promising combination strategy for inhibiting pre-metastatic initiation in multiple ways to treat cancer metastasis.


Asunto(s)
Liposomas , Fosfatidilinositol 3-Quinasas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Ratones , Macrófagos Asociados a Tumores
15.
Ann Biomed Eng ; 50(11): 1534-1545, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35303171

RESUMEN

In this work we present a new physics-informed machine learning model that can be used to analyze kinematic data from an instrumented mouthguard and detect impacts to the head. Monitoring player impacts is vitally important to understanding and protecting from injuries like concussion. Typically, to analyze this data, a combination of video analysis and sensor data is used to ascertain the recorded events are true impacts and not false positives. In fact, due to the nature of using wearable devices in sports, false positives vastly outnumber the true positives. Yet, manual video analysis is time-consuming. This imbalance leads traditional machine learning approaches to exhibit poor performance in both detecting true positives and preventing false negatives. Here, we show that by simulating head impacts numerically using a standard Finite Element head-neck model, a large dataset of synthetic impacts can be created to augment the gathered, verified, impact data from mouthguards. This combined physics-informed machine learning impact detector reported improved performance on test datasets compared to traditional impact detectors with negative predictive value and positive predictive values of 88 and 87% respectively. Consequently, this model reported the best results to date for an impact detection algorithm for American football, achieving an F1 score of 0.95. In addition, this physics-informed machine learning impact detector was able to accurately detect true and false impacts from a test dataset at a rate of 90% and 100% relative to a purely manual video analysis workflow. Saving over 12 h of manual video analysis for a modest dataset, at an overall accuracy of 92%, these results indicate that this model could be used in place of, or alongside, traditional video analysis to allow for larger scale and more efficient impact detection in sports such as American Football.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Protectores Bucales , Humanos , Conmoción Encefálica/diagnóstico , Fútbol Americano/lesiones , Dispositivos de Protección de la Cabeza , Cabeza , Fenómenos Biomecánicos , Aprendizaje Automático , Física , Aceleración
16.
Front Cell Infect Microbiol ; 12: 940906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873170

RESUMEN

Foot-and-mouth disease virus (FMDV) could cause acute infection in host cells, or they could coexist with host cells to generate persistent infection. In persistent infection, the virus could survive for a long time in the host and could be transmitted between different host cells. In the case of FMDV-persistent infection cell line, there is a remarkable significant cellular heterogeneity in the FMDV-persistent infection cell line due to differences of viral load in the individual cells within the cell line. However, the mechanisms of FMDV-persistent infection are not well understood. It is now generally accepted that multiple factors contribute to the coevolution of viruses and cells during the course of persistent infection. The outcome would influence the development of persistent FMDV infection conjointly, reaching a state of equilibrium ultimately. Therefore, in order to elucidate the mechanism of cellular heterogeneity in FMDV-persistent infection cell line, single-cell sequencing was performed on BHK-Op, and pseudotime trajectory plot was draw through cell cluster. Based on the cell clusters, we predicted the development and progression of the FMDV-persistent infection. It could be well explained by the fact that, in BHK-Op cells, there are a fraction of infected cells and a fraction of virus-exposed but uninfected bystander cells. By further comparing the transcripts in cell clusters, we found that these genes were involved in changes in ribosome biogenesis, cell cycle, and intracellular signaling including the interferon signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway. Through comprehensive cross-tabulation analysis of differential expressed genes in various cluster of cells, we identified a high association of Fos, a downstream transcription factor of the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway, with viral replication during the formation of FMDV-persistent infection. Through the further study of Fos, we found that downregulation of Fos facilitates viral clearance during FMDV-persistent infection. Upregulation of c-Raf, which is the upstream of the MAPK/ERK signaling pathway, could promote FMDV replication through downregulation of Fos. Our research is the first to provide insight into the mechanism of the formation FMDV-persistent infection through single-cell sequencing using persistent infection cell line. Pseudotime trajectory analysis was the first time to apply for FMDV-persistent infection cell line. Our work highlights the detailed overview of the evolution of FMDV-persistent infection. We also analyzed the differential expressed genes in the replication or elimination of FMDV within the host. We found that the MAPK/ERK signaling pathway and its downstream transcription factor Fos play an important role in FMDV-persistent infection.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/genética , Infección Persistente , Factores de Transcripción/metabolismo , Replicación Viral/genética
17.
Eur J Pharm Sci ; 174: 106188, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35427741

RESUMEN

Our previous studies have confirmed that luteolin (LU) has a good therapeutic effect on obesity and its complications. However, due to its poor water solubility, the bioavailability is low with limited clinical application. Therefore, the water-soluble solid dispersions (SD) of luteolin were prepared with polyvinylpyrrolidone (PVP) (K10, K40 & K90) by solvent evaporation. The polyvinylpyrrolidone K40 (PVP40) was selected as the ideal carrier to formulate polyvinylpyrrolidone K40-luteolin solid dispersion (PVP40-LU SD), thereby the solubility of luteolin increased about 250 times compared to the pure luteolin, without changing its physical stability and activity. The crystallinity of luteolin was reduced after the formation of solid dispersion, and no strong drug-polymer interactions were observed. This prepared water-soluble luteolin inhibits the polarization of inflammatory macrophages by decreasing the expression of pro-inflammatory cytokine genes interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in vitro. Moreover, it can improve glucose tolerance and insulin sensitivity quickly after intraperitoneal injection in mice.


Asunto(s)
Resistencia a la Insulina , Povidona , Animales , Rastreo Diferencial de Calorimetría , Inflamación/tratamiento farmacológico , Luteolina/farmacología , Ratones , Solubilidad , Agua
18.
J Control Release ; 334: 248-262, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33915224

RESUMEN

Triple negative breast cancer (TNBC) with highly metastatic features generally does not respond to anti-programmed cell death 1 ligand 1 (PD-L1) therapy due to multiple immunosuppressive mechanisms to exclude and disable T cells. Here, we develop a polymer-based combinatory approach consisting of both immunogenic cell death (ICD)-inducing and CXCR4-inhibiting function to prime tumor microenvironment and improve anti-PD-L1 therapy in TNBC. Our findings revealed that the combination therapy was able to spur the T cell response in primary tumors by increasing the tumor immunogenicity to recruit T cells, removing the physiological barriers of intratumoral fibrosis and collagen to increase T cell infiltration, and reducing the immunosuppressive cells to revive T cells. Meanwhile, such approach efficiently inhibited the formation of pre-metastatic niche in abscopal lung. Because of the significant promotion of anti-tumor and anti-metastasis immunity, the non-responding TNBC gained robust responsiveness to anti-PD-L1 therapy which resulted in complete eradication of orthotopic tumors, inhibition of pulmonary metastasis, and durable memory effects against tumor recurrence. Our work provided a generalizable approach of simultaneous ICD induction and CXCR4 blockade to apply anti-PD-L1 therapy in TNBC.


Asunto(s)
Antígeno B7-H1 , Muerte Celular Inmunogénica , Receptores CXCR4/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas , Antígeno B7-H1/antagonistas & inhibidores , Humanos , Polímeros , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente Tumoral
19.
Int J Pharm ; 608: 121077, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34487811

RESUMEN

Cancer metastasis, which increases the mortality in a short period of time, has been considered as the main challenge in tumor treatment. However, tumor growth suppression also should not be ignored in cancer metastasis treatment. Recently, accumulating evidences have suggested that mitochondria play an important role in mitigating caner metastasis. Nucleus, as the repository of genetic information, plays a key role in cell proliferation. However, it remains elusive that the concurrent impairment of nucleus and mitochondria may achieve better anti-tumor and anti-metastatic effects. Here, we designed a mitochondria-penetrating peptide modified doxorubicin (MPP-Dox) loaded N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer conjugates (PM), as well as a nuclear accumulating HPMA copolymer Dox conjugates (PN) by the nuclear tendency of Dox. After co-delivering the two copolymers (abbreviation for PMN), PM promoted cell apoptosis and inhibited tumor metastasis by damaging mitochondria, whereas PN suppressed cell proliferation and promoted apoptosis by destroying nucleus. Importantly, PM and PN complemented each other as expected. The mitochondrial dysfunction and tumor metastasis inhibition of PM was improved by PN, while cell proliferation suppression and apoptosis by nucleus destroying of PN was enhanced by PM. As a result, tumor growth of breast cancer 4T1 cells in vivo was significantly restrained and lung metastasis was potently decreased and almost eradicated, fully reflecting the advantages of organelle targeting combination therapy. As a consequence, our work showed that concurrent impairment of nucleus and mitochondria was feasible and beneficial to metastatic cancer treatment.


Asunto(s)
Doxorrubicina , Neoplasias , Apoptosis , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Mitocondrias , Polímeros
20.
Orphanet J Rare Dis ; 16(1): 513, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906192

RESUMEN

BACKGROUND: Thoracic aortic aneurysm and dissection (TAAD) is a hidden-onset but life-threatening disorder with high clinical variability and genetic heterogeneity. In recent years, an increasing number of genes have been identified to be related to TAAD. However, some genes remain uncertain because of limited case reports and/or functional studies. LTBP3 was such an ambiguous gene that was previously known for dental and skeletal dysplasia and then noted to be associated with TAAD. More research on individuals or families harboring variants in this gene would be helpful to obtain full knowledge of the disease and clarify its association with TAAD. METHODS: A total of 266 TAAD probands with no causative mutations in known genes had been performed wholeexome sequencing (WES) to identify potentially pathogenic variants. In this study, rare LTBP3 variants were the focus of analysis. RESULTS: Two compound heterozygous mutations, c.625dup (p.Leu209fs) and c.1965del (p.Arg656fs), in LTBP3 were identified in a TAAD patient along with short stature and dental problems, which was the first TAAD case with biallelic LTBP3 null mutations in an Asian population. Additionally, several rare heterozygous LTBP3 variants were also detected in other sporadic TAAD patients. CONCLUSION: The identification of LTBP3 mutations in TAAD patients in our study provided more clinical evidence to support its association with TAAD, which broadens the gene spectrum of LTBP3. LTBP3 should be considered to be incorporated into the routine genetic analysis of heritable aortopathy, which might help to fully understand its phenotypic spectrum and improve the diagnostic rate of TAAD.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Disección Aórtica/diagnóstico , Disección Aórtica/genética , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/genética , Pruebas Genéticas , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Mutación/genética , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA