Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 39(18): 6413-6424, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126772

RESUMEN

Pathogenic infections pose a significant risk to public health and are regarded as one of the most difficult clinical treatment obstacles. A reliable and safe photothermal antibacterial platform is a promising technique for the treatment of bacterial infections. Given the damage that high temperatures cause in normal tissues and cells, a multifunctional hydrogel driven by photothermal energy is created by trapping bacteria to reduce heat transfer loss and conduct low-temperature photothermal sterilization efficiently. The 3-aminobenzene boronic acid (ABA)-modified graphene oxide is combined with carboxymethyl chitosan (CMCS) and cellulose nanocrystalline (CNC) networks to create the ABA-GO/CNC/CMCS composite hydrogel (composite gel). The obtained composite gel displays a uniform three-dimensional network structure, which can be rapidly heated to 48 °C under infrared light irradiation and is beneficial for killing wound infection bacteria and promoting wound healing. The results of animal experiments show that the composite gel significantly reduces inflammation by killing >99.99% of bacteria under near-infrared light irradiation. The result also demonstrates that it increases the granulation tissue thickness and collagen distribution and promotes wound healing. After treatment for 14 days, compared with the remaining 27.73% of the remaining wound area in the control group, the wound area in the composite gel with NIR group is only 0.91%. It significantly accelerates the wound healing process of Staphylococcus aureus infection and shows great potential for clinical application.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Animales , Hidrogeles/química , Antibacterianos/química , Bacterias , Colágeno , Celulosa
2.
J Colloid Interface Sci ; 615: 215-226, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35131502

RESUMEN

Conductive hydrogel has been considered as a promising material for wearable sensors, constructing a flexible conductive hydrogel sensor with super stretchability, adhesion, and sensing stability is essential, but still challenging. Herein, A super-stretchable, adhesive, and conductive nanocomposite hydrogel was successfully constructed by a facile and one-pot process in conjunction with ball milling and blending. The resulting hydrogel exhibited super-stretchable ability (2795%), excellent tensile stress (128.6 kPa), good fatigue resistance, and self-recovery ability due to multiple cross-linked network structures, including physical hybrid networks (hydrogen bonds and ionic coordination bonds) and flexible polyacrylamide networks. Moreover, the nanocomposite hydrogel showed outstanding conductivity stability, fast response, durability, and repeatability. And it displayed excellent adhesion on various materials. Strain sensors based on hydrogels showed high sensitivity, stability, and action recognition ability. In summary, this work provides a simple strategy for preparing conductive hydrogel sensors with high stretchability, adhesion, and stability, and has potential application prospects in the field of wearable sensors for human body motion detection.


Asunto(s)
Nanofibras , Dispositivos Electrónicos Vestibles , Adhesivos/química , Celulosa/química , Conductividad Eléctrica , Humanos , Hidrogeles/química , Nanogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA