Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Water Sci Technol ; 86(6): 1578-1589, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36178825

RESUMEN

To improve the removal efficiency of antibiotics in moving bed biofilm reactor, suspended biochar block was prepared by the one-pot process and was used as carriers to construct a reaction device to study the treatment effect of antibiotic wastewater. The characteristics of the hanging biofilm in wastewater were investigated. And the mechanism of biochar as a biological carrier has been studied. The results showed that in the 45-day experiment, the maximum number of biofilms for suspended biochar carriers was twice 3.4 times that of the high-density polyethylene carriers. When 10 mg/L tetracycline was added to the reactor, the removal efficiency of the tetracycline removal rate was 71.85% and the chemical oxygen demand (COD), total nitrogen (TN), and NH4+-N removal efficiency reached to 89.95, 61.91 and 85.47% respectively. Suspension biochar carriers can reduce fluctuations in redox potentials, thereby improving the cellular efficiency of microorganisms. Meanwhile, it inhibits the production of soluble microbial products and extracellular polymers, reduces toxic effects, and enhances the adhesion between microorganisms and carriers. The microbial communities of the two carriers were investigated by high-throughput sequencing techniques. Suspended biochar significantly increased the relative abundance of Hydrogenophaga and Comamonas, and improved the ability of nitrification and denitrification. Comamonas could be responsible for tetracycline degradation.


Asunto(s)
Compuestos Heterocíclicos , Aguas Residuales , Antibacterianos , Biopelículas , Reactores Biológicos , Carbón Orgánico , Desnitrificación , Nitrificación , Nitrógeno/química , Polietileno , Tetraciclina , Eliminación de Residuos Líquidos/métodos
2.
Food Chem ; 427: 136692, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37364315

RESUMEN

Diarrheal shellfish toxins are considered one of the most lethal red tide algae toxins in the worldwide. In this work, we propose an Ag NPs-loaded bacterial cellulose membrane (BCM) surface-enhanced Raman scattering (SERS) sensor based on an aptamer (Apt) for the ultrasensitive detection of dinophysistoxin (DTX-1), a type of diarrheal shellfish toxin. During drying, Ag NPs can be further densified on "gel-like" BCM to form high-density SERS "hot spots". We developed the "Apt-SH@Ag NPs@BCM" SERS sensor and used the competition of DTX-1 and complementary base (Cob) in the process of base complementary pairing to achieve SERS detection of DTX-1, with a minimum detection limit of 9.5 × 10-10 mol/L. Sample assays showed DTX-1 recovery rates ranging from 95.8% and 108.2% and the detection results were comparable to those obtained by LC-MS. Therefore, this work holds great potential for detecting of toxic substances in shellfish products, especially for the oyster (portuguese oyster) and mussel (blue mussel).


Asunto(s)
Celulosa , Nanopartículas del Metal , Humanos , Plata/química , Nanopartículas del Metal/química , Toxinas Marinas/toxicidad , Mariscos/análisis , Diarrea , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA