Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 23(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495559

RESUMEN

Ethylene glycol (EG)-based lubricant was prepared with dissolved organosolv lignin from birch wood (BL) and softwood (SL) biomass. The effects of different lignin types on the rheological, thermal, and tribological properties of the lignin/EG lubricants were comprehensively investigated by various characterization techniques. Dissolving organosolv lignin in EG results in outstanding lubricating properties. Specifically, the wear volume of the disc by EG-44BL is only 8.9% of that lubricated by pure EG. The enhanced anti-wear property of the EG/lignin system could be attributed to the formation of a robust lubrication film and the strong adhesion of the lubricant on the contacting metal surface due to the presence of a dense hydrogen bonding (H-bonding) network. The lubricating performance of EG-BL outperforms EG-SL, which could be attributed to the denser H-bonding sites in BL and its broader molecular weight distribution. The disc wear loss of EG-44BL is only 45.7% of that lubricated by EG-44SL. Overall, H-bonding is the major contributor to the different tribological properties of BL and SL in EG-based lubricants.


Asunto(s)
Glicol de Etileno/química , Lignina/química , Lubricantes/química , Madera/química , Biomasa , Peso Molecular , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
2.
Nat Mater ; 14(10): 1065-71, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26213897

RESUMEN

Devices resident in the stomach-used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery-typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.


Asunto(s)
Sistemas de Liberación de Medicamentos , Elastómeros , Polímeros/química , Estómago/efectos de los fármacos , Animales , Electrónica , Esófago/efectos de los fármacos , Tránsito Gastrointestinal/fisiología , Geles/química , Humanos , Concentración de Iones de Hidrógeno , Porcinos , Comprimidos , Tecnología Farmacéutica
3.
J Colloid Interface Sci ; 629(Pt A): 778-785, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36099845

RESUMEN

Single-atom catalysts (SACs) have opened up unprecedented possibilities for expediting oxygen reduction reaction (ORR) kinetics owing to their ultrahigh intrinsic activities. However, precisely controlling over the atomically dispersed metal-Nx sites on carbon support while fulfilling the utmost utilization of metal atoms remain the key obstacles. Here, atomically distributed Co-N4 sites anchored on N-doped carbon nanofibers aerogel (Co SAs/NCNA) is controllably attained through a direct pyrolysis of metal-chelated cellulose nanofibers (TOCNFs-Cd2+/Co2+) hydrogel precursor. The usage of Cd salt assists the assembly of cross-linked aerogel, creates a large number of interior micropores and defects, and favors the physical isolation of Co atoms. The hierarchically porous biomass carbon aerogel (2265.1 m2/g) offers an advantageous platform to facilitate accessibility of the catalytic centers, also renders rapid mass diffusion and electron-transfer paths throughout its 3D architecture. Notably, Co SAs/NCNA affords a paramount ORR activity and respectable durability when integrated into zinc-air battery devices.


Asunto(s)
Nanofibras , Cobalto , Celulosa , Carbono , Zinc , Cadmio , Hidrogeles , Oxígeno
4.
J Am Chem Soc ; 134(44): 18467-74, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23092249

RESUMEN

A rapid and efficient approach for the preparation and modification of a versatile class of functional polymer nanoparticles has been developed, for which the entire engineering process from small molecules to polymers to nanoparticles bypasses typical slow and inefficient procedures and rather employs a series of steps that capture fully the "click" chemistry concepts that have greatly facilitated the preparation of complex polymer materials over the past decade. The construction of various nanoparticles with functional complexity from a versatile platform is a challenging aim to provide materials for fundamental studies and also optimization toward a diverse range of applications. In this paper, we demonstrate the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities based on a biodegradable polyphosphoester block copolymer system. From a retrosynthetic point of view, the nonionic, anionic, cationic, and zwitterionic micelles with hydrodynamic diameters between 13 and 21 nm and great size uniformity were quickly formed by suspending, independently, four amphiphilic diblock polyphosphoesters into water, which were functionalized from the same parental hydrophobic-functional AB diblock polyphosphoester by click-type thiol-yne reactions. The well-defined (PDI < 1.2) hydrophobic-functional AB diblock polyphosphoester was synthesized by an ultrafast (<5 min) organocatalyzed ring-opening polymerization in a two-step, one-pot manner with the quantitative conversions of two kinds of cyclic phospholane monomers. The whole programmable process starting from small molecules to nanoparticles could be completed within 6 h, as the most rapid approach for the anionic and nonionic nanoparticles, although the cationic and zwitterionic nanoparticles required ca. 2 days due to purification by dialysis. The micelles showed high biocompatibility, with even the cationic micelles exhibiting a 6-fold lower cytotoxicity toward RAW 264.7 mouse macrophage cells, as compared to the commercial transfection agent Lipofectamine.


Asunto(s)
Materiales Biomiméticos/química , Química Clic/métodos , Nanopartículas/química , Polímeros/química , Animales , Materiales Biomiméticos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Química Clic/economía , Ratones , Micelas , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polimerizacion , Polímeros/toxicidad
5.
Sci Total Environ ; 808: 152099, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34863761

RESUMEN

Microplastics (MPs) coexist with other pollutants (such as heavy metals) in water, adversely impacting aquatic organisms, which might cause unpredictable ecological risks. This study aims to evaluate the effect of copper (Cu2+) and polystyrene microplastics (PS-MPs) on antioxidant capacity, immune response and intestinal microbiota of Nile tilapia. Cu2+ and PS-MPs co-exposure enhanced Cu2+ bioaccumulation in the liver of fish compared with Cu2+-alone exposure. Fish exposed to PS-MPs and Cu2+ displayed histopathologic alterations in the liver, intestine and gill. Exposure at low concentrations of Cu2+ in the C0 and CP0 groups can improve antioxidant capacity and immune response, while oxidative damage and inflammation existed in the high concentration of Cu2+ groups. Intestinal microbiota results showed that the diversity and structure were changed by Cu2+ and PS-MPs exposure, and harmful bacterium even increased at high concentration of Cu2+ and PS-MPs exposure groups. All in all, PS-MPs aggravate the accumulation of Cu2+ and lead to perturbations in biological systems of Nile tilapia.


Asunto(s)
Cíclidos , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Antioxidantes , Cobre/toxicidad , Inmunidad , Microplásticos , Plásticos , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad
6.
J Am Chem Soc ; 132(36): 12522-4, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20718470

RESUMEN

We report here a controllable shape transformation of polymer vesicles (polymersomes) constructed from block copolymers of which the hydrophobic part is a high-molecular-weight glassy segment. Control over the shape transformation is obtained by kinetic manipulation of the phase behavior of this glassy hydrophobic segment. Kinetic manipulation of the phase behavior of polymer membranes allows for different shapes of polymersomes to be captured at specific times, which directly translates into physically robust nanostructures that are otherwise unobtainable. Combining the morphological diversity of giant liposomes and the physical robustness of polymersomes, our finding can be a general way to realize unusual nanostructures in a predictable manner.


Asunto(s)
Polímeros/química , Vidrio/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Peso Molecular , Nanoestructuras/química , Tamaño de la Partícula , Propiedades de Superficie
7.
Adv Mater ; 32(32): e2002878, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32596980

RESUMEN

The capability of sensor systems to efficiently scavenge their operational power from stray, weak environmental energies through sustainable pathways could enable viable schemes for self-powered health diagnostics and therapeutics. Triboelectric nanogenerators (TENG) can effectively transform the otherwise wasted environmental, mechanical energy into electrical power. Recent advances in TENGs have resulted in a significant boost in output performance. However, obstacles hindering the development of efficient triboelectric devices based on biocompatible materials continue to prevail. Being one of the most widely used polymers for biomedical applications, polyvinyl alcohol (PVA) presents exciting opportunities for biocompatible, wearable TENGs. Here, the holistic engineering and systematic characterization of the impact of molecular and ionic fillers on PVA blends' triboelectric performance is presented for the first time. Triboelectric devices built with optimized PVA-gelatin composite films exhibit stable and robust triboelectricity outputs. Such wearable devices can detect the imperceptible skin deformation induced by the human pulse and capture the cardiovascular information encoded in the pulse signals with high fidelity. The gained fundamental understanding and demonstrated capabilities enable the rational design and holistic engineering of novel materials for more capable biocompatible triboelectric devices that can continuously monitor vital physiological signals for self-powered health diagnostics and therapeutics.


Asunto(s)
Materiales Biocompatibles/química , Fenómenos Fisiológicos Cardiovasculares , Ingeniería , Monitoreo Fisiológico/instrumentación , Alcohol Polivinílico/química , Dispositivos Electrónicos Vestibles , Suministros de Energía Eléctrica , Fenómenos Mecánicos
8.
Int J Biol Macromol ; 129: 564-570, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30707998

RESUMEN

Lignin, one of the most abundant natural polymers, has been successfully used as an effective lubricant additive with high value. The chemical structure of lignin is very diverse and strongly affected by both the source of lignin (i.e. plant species) and the lignin extraction process. In this work, a series of lignin from different biomass sources (hard or soft wood) and extraction process (organosolv with or without acid catalyst) has been successfully incorporated into poly(ethylene glycol) (PEG) and fortified lubricating properties were achieved. The effects of different lignin on the rheological, thermal and tribological properties of the lignin/EG lubricants were systematically investigated by different characterization techniques. Lignin in PEG significantly improves the lubricating property, where a wear reduction of 93.8% was observed. The thermal and lubrication properties of the PEG lubricants filled with different kinds of lignin are tightly related to the synergistic state of hydrogen bonding and molecular weight distribution. Lignin with broader molecular weight distribution and higher hydroxyl content shows better adhesion on metal surfaces and strengthened lubricating film, which could be used as the efficient lubricating additives. This work provides a criterion for selecting appropriate lignin as the efficient lubricant additive and accelerates the application of lignin.


Asunto(s)
Lignina/química , Lubricantes/química , Polietilenglicoles/química , Enlace de Hidrógeno , Peso Molecular , Viscosidad
9.
Colloids Surf B Biointerfaces ; 159: 108-117, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28780457

RESUMEN

The TiO2 nanotube pattern with features down to 20nm (TN20) is highly and efficiently resistant to fibrinogen and S. aureus attachment. The ability of TN20 to resist biofouling adsorption, is due to low biofouling-surface adhesion force that determines the initial biofouling attachment, as well as the low friction coefficient that enables a complete removal of biofouling from a low-adhesive 'repelling' TN20 substrate under fluid flow. By grafting PEG molecules onto TN20, a significantly higher S. aureus cells attachment was observed, because of the stronger adhesion forces originated from the deformation of the soft PEG coatings. The complete interaction of S. aureus on structure-free dense TiO2 (DT), yields larger contact area and thus higher adhesion force than on any other TiO2 surfaces, resulting in a high coverage of bacteria. The existing high friction coefficient of S. aureus on TN80 (TiO2 with 80nm nanotubular size) and TN80-P (PEG-modified TN80), due to the much greater surface roughness, would contribute to the immobilization of biofouling on the surface under fluid flow, even though the two surfaces exhibit low adhesion forces. The analysis of adhesion and friction forces manipulated by TiO2 nanotubular topography and posted PEG patterns, advances our understanding of the mechanisms by which nanotopography patterned surfaces reduce biofouling attachment.


Asunto(s)
Polietilenglicoles/química , Titanio/química , Bacterias/efectos de los fármacos , Incrustaciones Biológicas , Microscopía de Fuerza Atómica , Nanotubos/química , Propiedades de Superficie , Titanio/farmacología
10.
Colloids Surf B Biointerfaces ; 145: 785-794, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27295495

RESUMEN

The use of graphene oxide (GO) nanosheets for functional enzyme support has attracted intensive interest owing to their unique planar structure and intriguing physical and chemical properties. However, the detailed effects of the interface properties of GO and its functionalized derivatives on active biomolecules are not well understood. We immobilize nuclease P1, a common industrial nucleic acid production enzyme, on pristine and amino poly(ethylene glycol) (PEG-NH2) modified GO nanosheets with interface property heterogeneity using two approaches, physical adsorption and chemical crosslinking. It is demonstrated that nuclease P1 could be stable immobilized on the surface of pristine GO by physical adsorption and on the edge of modified GO nanosheets by chemical crosslinking. The resultant loading capacity of nuclease P1 on pristine GO is as high as 6.45mg/mg as a consequence of strong electrostatic and hydrophobic interactions between the enzyme and carrier. However, it is determined that the acid resistance, thermal stability, reusability and degradation efficiency of the immobilized enzyme on PEG-NH2-modified GO are obviously improved compared to those of the enzyme immobilized on pristine GO. The enhanced catalytic behavior demonstrates that GO and its derivatives have great potential in efficient biocatalytic systems.


Asunto(s)
Enzimas Inmovilizadas/química , Grafito/química , Óxidos/química , Polietilenglicoles/química , Biocatálisis
11.
ACS Appl Mater Interfaces ; 7(22): 12230-7, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25980528

RESUMEN

Hierarchically porous tubular carbon (HPTC) with large surface area of 1094 m(2)/g has been successfully synthesized by selectively removing lignin from natural wood. No templates or chemicals are involved during the process. By further KOH activation, surface area of activated HPTC reaches up to 2925 m(2)/g. These materials show unprecedented high adsorption capacity toward organic dyes (methylene blue, 838 mg/g; methyl orange, 264 mg/g) and large electrochemical capacitance of >200 F/g. The sustainable feature of the wood precursor and demonstrated superior adsorption and energy storage properties allow promising applications of the processed materials in energy and environmental related fields.


Asunto(s)
Carbono/química , Capacidad Eléctrica , Lignina/química , Madera/química , Adsorción , Electrodos , Lignina/aislamiento & purificación , Azul de Metileno/química , Porosidad
12.
J Control Release ; 97(1): 43-53, 2004 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-15147803

RESUMEN

The pore size and permeability control of a glucose-responsive gating membrane with plasma-grafted poly(acrylic acid) (PAAC) gates and covalently bound glucose oxidase (GOD) enzymes were investigated systematically. The PAAC-grafted porous polyvinylidene fluoride (PVDF) membranes with a wide range of grafting yields were prepared using a plasma-graft pore-filling polymerization method, and the immobilization of GOD was carried out by a carbodiimide method. The linear grafted PAAC chains in the membrane pores acted as the pH-responsive gates or actuators. The immobilized GOD acted as the glucose sensor and catalyzer; it was sensitive to glucose and catalyzed the glucose conversion to gluconic acid. The experimental results showed that the glucose responsivity of the solute diffusional permeability through the proposed membranes was heavily dependent on the PAAC grafting yield, because the pH-responsive change of pore size governed the glucose-responsive diffusional permeability. It is very important to design a proper grafting yield for obtaining an ideal gating response. For the proposed gating membrane with a PAAC grafting yield of 1.55%, the insulin permeation coefficient after the glucose addition (0.2 mol/l) was about 9.37 times that in the absence of glucose, presenting an exciting result on glucose-sensitive self-regulated insulin permeation.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Glucosa/farmacocinética , Insulina/farmacocinética , Glucosa/administración & dosificación , Insulina/administración & dosificación , Permeabilidad , Polivinilos/administración & dosificación , Polivinilos/farmacocinética
13.
J Control Release ; 152(1): 37-48, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21241750

RESUMEN

Detailed studies were performed to probe the effects of the core and shell dimensions of amphiphilic, shell crosslinked, knedel-like polymer nanoparticles (SCKs) on the loading and release of doxorubicin (DOX), a widely-used chemotherapy agent, in aqueous buffer, as a function of the solution pH. Effects of the nanoparticle composition were held constant, by employing SCKs constructed from a single type of amphiphilic diblock copolymer, poly(acrylic acid)-b-polystyrene (PAA-b-PS). A series of four SCK nanoparticle samples, ranging in number-average hydrodynamic diameter from 14-30 nm, was prepared from four block copolymers having different relative block lengths and absolute degrees of polymerization. The ratios of acrylic acid to styrene block lengths ranged from 0.65 to 3.0, giving SCKs with ratios of shell to core volumes ranging from 0.44 to 2.1. Although the shell thicknesses were calculated to be similar (1.5-3.1 nm by transmission electron microscopy (TEM) calculations and 3.5-4.9 nm by small angle neutron scattering (SANS) analyses), two of the SCK nanoparticles had relatively large core diameters (19±2 and 20±2 nm by TEM; 17.4 and 15.3 nm by SANS), while two had similar, smaller core diameters (11±2 and 13±2 nm by TEM; 9.0 and 8.9 nm by SANS). The SCKs were capable of being loaded with 1500-9700 DOX molecules per each particle, with larger numbers of DOX molecules packaged within the larger core SCKs. Their shell-to-core volume ratio showed impact on the rates and extents of release of DOX, with the volume occupied by the poly(acrylic acid) shell relative to the volume occupied by the polystyrene core correlating inversely with the diffusion-based release of DOX. Given that the same amount of polymer was used to construct each SCK sample, SCKs having smaller cores and higher acrylic acid vs. styrene volume ratios were present at higher concentrations than were the larger core SCKs, and gave lower final extents of release., Higher final extents of release and faster rates of release were observed for all DOX-loaded particle samples at pH 5.0 vs. pH 7.4, respectively, ca. 60% vs. 40% at 60 h, suggesting promise for enhanced delivery within tumors and cells. By fitting the data to the Higuchi model, quantitative determination of the kinetics of release was made, giving rate constants ranging from 0.0431 to 0.0540 h⁻¹/² at pH 7.4 and 0.106 to 0.136 h⁻¹/² at pH 5.0. In comparison, the non-crosslinked polymer micelle analogs exhibited rate constants for release of DOX of 0.245 and 0.278 h⁻¹/² at pH 7.4 and 5.0, respectively. These studies point to future directions to craft sophisticated devices for controlled drug release.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Polímeros/química , Reactivos de Enlaces Cruzados/química , Doxorrubicina/química , Microscopía Electrónica de Transmisión , Polímeros/administración & dosificación , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA