Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 261(Pt 2): 129829, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296134

RESUMEN

Three-dimensional interpenetrating and hierarchically porous carbon material is an efficient catalyst support in water remediation and it is still a daunting challenge to establish the relationship between hierarchically porous structure and catalytic degradation performance. Herein, a highly porous silica (SiO2)/cellulose-based carbon aerogel with iron-based catalyst (FexOy) was fabricated by in-situ synthesis, freeze-drying and pyrolysis, where the addition of SiO2 induced the hierarchically porous morphology and three-dimensional interpenetrating sheet-like network with nitrogen doping. The destruction of cellulose crystalline structure by SiO2 and the iron-catalyzed breakdown of glycosidic bonds synergistically facilitated the formation of electron-rich graphite-like carbon skeleton. The unique microstructure is confirmed to be favorable for the diffusion of reactants and electron transport during catalytic process, thus boosting the catalytic degradation performance of carbon aerogels. As a result, the catalytic degradation efficiency of tetracycline under light irradiation by adding only 5 mg of FexOy/SiO2 cellulose carbon aerogels was as high as 90 % within 60 min, demonstrating the synergistic effect of photocatalysis and Fenton reaction. This ingenious structure design provides new insight into the relationship between hierarchically porous structure of carbon aerogels and their catalytic degradation performance, and opens a new avenue to develop cellulose-based carbon aerogel catalysts with efficient catalytic performance.


Asunto(s)
Carbono , Compuestos Heterocíclicos , Carbono/química , Hierro/química , Dióxido de Silicio , Celulosa/química , Porosidad , Tetraciclina/química , Antibacterianos , Catálisis
2.
J Colloid Interface Sci ; 630(Pt A): 772-782, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283265

RESUMEN

Immobilizing catalyst system faces the challenge of balancing catalysts stability and exposure of active site in water treatment. In this study, a novel in-situ synthesis of monoclinic phase of titanium dioxide (TiO2(B)) in cellulose-derived carbon aerogel (TCA) is proposed for processing multi-task in water treatment. The homogeneous gelation reaction supported the high dispersion of TiO2(B) in carbon skeleton. Meanwhile, TiO2 acts as crosslinker to reinforce cellulose network, then the grain refinement of amorphous TiO2 is limited to obtain TiO2(B) during carbonization. Benefiting from the reinforced structure, TCA remains the porous structure after carbonization and exposes more adsorption site than carbon aerogel blended with anatase particles (ACA). The adsorption performance of TCA are 837.3 mg/g, 1156.2 mg/g and 512.6 mg/g on methylene blue, malachite green and crystal violet, respectively. Compared with ACA, the superior interaction between TiO2 and graphite-like carbon improves the degradation rate of tetracycline from 1.3 × 10-3 min-1 to 8.6 × 10-3 min-1, and maintains the degradation efficiency in 3 rounds cyclic test. Besides, TCA also exhibits nearly twice to ACA on absorption capacity of different oil. This facile in-situ synthesis method offers a new insight in fabricating carbon aerogel immobilized photocatalysts system for multi-task in water treatment.


Asunto(s)
Nanocompuestos , Purificación del Agua , Carbono , Titanio/química , Nanocompuestos/química , Celulosa/química , Catálisis
3.
Carbohydr Polym ; 296: 119957, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36087999

RESUMEN

Hydrogel supported photocatalyst, an efficient strategy for water remediation suffers from compromised catalytic activity and insufficient stability. Herein, a robust cellulose-based composite hydrogel with zinc oxide (ZnO)/silica (SiO2) heterojunctions were fabricated by in-situ synthesis, where SiO2 not only acted as a cross-linking agent to enhance the mechanical strength and stability of hydrogel, but also promoted the photocatalytic properties of ZnO via transferring the electron-hole pairs due to its surface state. As a result, a significant improvement in the mechanical properties of cellulose-based composite hydrogel was achieved, exhibiting a high compressive strength of 703.4 kPa. Moreover, the degradation efficiency of methylene blue (MB) under light irradiation by cellulose-based composite hydrogel was 95 % in 120 min and the removal ratio maintained as high as 90 % after eight degradation cycles. This study provides a low-cost and facile method to construct new hydrogel supports with high stability and efficient photocatalytic properties.


Asunto(s)
Óxido de Zinc , Catálisis , Celulosa , Hidrogeles , Iones , Dióxido de Silicio , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA