Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 336, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880905

RESUMEN

Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.


Asunto(s)
Sustitutos Sanguíneos , Hemoglobinas , Liposomas , Nanoestructuras , Oxígeno , Humanos , Hemoglobinas/química , Hemoglobinas/metabolismo , Sustitutos Sanguíneos/química , Oxígeno/química , Animales , Nanoestructuras/química , Liposomas/química , Nanocápsulas/química , Cicatrización de Heridas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Choque Hemorrágico/tratamiento farmacológico
2.
Ecotoxicol Environ Saf ; 256: 114821, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989554

RESUMEN

Microplastics (MPs) may pollute drinking water, accumulate in the food chain, and release toxic chemicals that may cause a variety of diseases. The detrimental effects of MPs on kidney injury and fibrosis under long-term accumulation have not been fully documented. In this study, mice were exposed to MPs with three different diameters (80 nm, 0.5 µm, and 5 µm) to investigate the detrimental influences of MPs on the kidney. The results showed that MPs of different diameters caused varying degrees of injury to the murine kidney. MPs exposure can induce an inflammatory response, oxidative stress, and cell apoptosis in the kidney and induce kidney injury, which ultimately promotes kidney fibrosis. Furthermore, transcriptome data revealed that chronic exposure to MPs could alter the expressions of multiple genes related to immune response (80 nm) and circadian rhythm (0.5 µm, and 5 µm). Overall, our data provide new evidence and potential research for investigating the harm of MPs to kidney of mammals and even humans.


Asunto(s)
Microplásticos , Plásticos , Humanos , Animales , Ratones , RNA-Seq , Riñón , Apoptosis , Poliestirenos , Mamíferos
3.
Anal Chem ; 93(5): 2959-2967, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33506679

RESUMEN

In this work, a low triggered potential electrochemiluminescence strategy based on gold-filled photonic crystals (GPCs) electrodes composed of photonic crystals self-assembled with polystyrene spheres and gold nanoparticles embedded in the gaps of the photonic crystals was proposed. The GPCs electrodes served as the detection platform to bind antigen, and Ru(bpy)32+-COOH as a luminophore was labeled on the antibody (Ab). Then, Ru(bpy)32+-COOH/Ab was connected to the immobilized antigen on the surface of the photonic crystals by the immunoreaction to avoid direct contact with the gold nanoparticles surface. ECL emission can only be initiated by electrochemical oxidation of tripropylamine (TPrA) since Ru(bpy)32+-COOH cannot be oxidized directly on the electrode surface. The TPrA·+ and TPrA· radicals generated by the oxidation of TPrA can spread to the vicinity of Ru(bpy)32+-COOH over a short distance and react with the Ru(bpy)32+-COOH, eventually producing ECL emission. The potential of ECL emission caused by TPrA oxidation was about 300 mV lower than that caused by Ru(bpy)32+-COOH oxidation because the oxidation potential of TPrA (0.95 V vs SCE) was lower than Ru(bpy)32+-COOH (1.25 V vs SCE). Furthermore, the photonic crystals nanomembrane has the capability to enhance electrochemiluminescence. Thereafter, tetracycline antibiotic as a model compound was successfully detected via competitive immunoassay on GPCs electrodes with a detection limit of 0.075 pg/mL (S/N = 3), which has broad application prospects in the field of analysis and detection.


Asunto(s)
Oro , Nanopartículas del Metal , Antibacterianos , Mediciones Luminiscentes , Poliestirenos , Tetraciclinas
4.
Childs Nerv Syst ; 37(5): 1803-1806, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32968878

RESUMEN

Fetus in fetu (FIF) is an extremely rare anomaly. It is predominantly seen retroperitoneally in 80% of cases but can present at atypical sites like the skull, sacrum, scrotum and the mouth. We reported a rare case of intracranial parasitic fetus. We described the prenatal and postnatal MRI findings of the case. There was no obvious spinal signal on the imaging findings at 35 weeks of gestation. However, the postnatal MRI revealed spinal column signal at 5 months and 11 days.


Asunto(s)
Gemelos Siameses , Ultrasonografía Prenatal , Femenino , Feto/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Embarazo , Cráneo
5.
Headache ; 60(10): 2654-2664, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33078413

RESUMEN

PURPOSE: The purpose of this paper is to review some of the causes of secondary headache particularly focusing on the subcategories of secondary headache in the International Classification of Headache Disorders, 3rd edition, the clinical features of these headaches, and their associated features and management. OVERVIEW: Headache attributed to trauma or injury to the head and/or neck, headache attributed to cranial or cervical vascular disorder, headache attributed to non-vascular intracranial disorder, headache attributed to a substance or its withdrawal, headache attributed to infection, headache attributed to disorder of homeostasis, and headache or facial pain attributed to disorder of the cranium, neck, eye, ears, nose, sinuses, teeth, mouth, or other facial or cervical structure are discussed in this paper. DISCUSSION: Headache is a common symptom of multiple medical conditions. Although a minority of headache patients have a secondary basis for their headaches, it is important to identify clinical features of secondary headache disorders including both the headache and non-headache features of the condition, diagnose the secondary etiology correctly, and treat them appropriately.


Asunto(s)
Cefaleas Secundarias/etiología , Humanos
6.
Small ; 15(25): e1901397, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31066236

RESUMEN

Microscale cell carriers have recently garnered enormous interest in repairing tissue defects by avoiding substantial open surgeries using implants for tissue regeneration. In this study, the highly open porous microspheres (HOPMs) are fabricated using a microfluidic technique for harboring proliferating skeletal myoblasts and evaluating their feasibility toward cell delivery application in situ. These biocompatible HOPMs with particle sizes of 280-370 µm possess open pores of 10-80 µm and interconnected paths. Such structure of the HOPMs conveniently provide a favorable microenvironment, where the cells are closely arranged in elongated shapes with the deposited extracellular matrix, facilitating cell adhesion and proliferation, as well as augmented myogenic differentiation. Furthermore, in vivo results in mice confirm improved cell retention and vascularization, as well as partial myoblast differentiation. These modular cell-laden microcarriers potentially allow for in situ tissue construction after minimally invasive delivery providing a convenient means for regeneration medicine.


Asunto(s)
Microesferas , Células Musculares/citología , Músculo Esquelético/citología , Animales , Materiales Biocompatibles/química , Línea Celular , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Porosidad , Conejos
7.
Macromol Rapid Commun ; 39(14): e1700828, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30117644

RESUMEN

A nonconjugated, alcohol-soluble zwitterionic polymer, poly(sulfobetaine methacrylate) (denoted by PSBMA), is employed as cathode interfacial layer (CIL) in polymer solar cells (PSCs) based on PTB7-Th:PC71 BM. Compared with the control device without CIL, PSCs with PSBMA CILs show significant enhancement on the resulting performance, and the highest power conversion efficiency (PCE) of 8.27% is achieved. Under parallel conditions, PSCs with PSBMA as CIL show comparable performance than those with widely used poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-ioctylfluorene)] as CIL. The polar groups of PSBMA not only provide a solvent orthogonal solubility in the process of preparation of the devices but also lead to interfacial dipole to the electrode, which promises a better energy level alignment. In addition, PSBMA-based devices show better abilities of hole blocking. These results indicate that the zwitterionic polymer PSBMA should be a promising CIL in PSC-based narrow-bandgap polymers.


Asunto(s)
Polímeros/química , Energía Solar , Alcoholes/química , Electrodos , Fluorenos/química , Solventes/química , Luz Solar , Tiofenos/química
8.
J Mater Sci Mater Med ; 30(1): 4, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30569403

RESUMEN

The purpose of our study is to prepare a biomimetic porous silk fibroin (SF)/biphasic calcium phosphate (BCP) scaffold, and evaluate its performance in bone tissue regeneration. The differences in pore size, porosity, mechanical strength and biocompatibility of four different fibroin-containing scaffolds (0, 20, 40, and 60% SF) were studied in vitro. After inoculation with MC3T3-E1 cells, the ectopic bone formation ability of the SF/BCP bionic scaffold was evaluated in a rat model. The SEM and CT demonstrated that compared with pure BCP group (0% SF), the pore size and porosity of SF/BCP scaffolds were proportional to SF content, of which 40% of SF and 60% of SF groups were more suitable for cell growth. The compressive strength of SF/BCP scaffold was greater than that of the pure BCP scaffold, and showed a trend of first increasing and then decreasing with the increase of SF content, among which 40% of SF group had the maximum compressive strength (40.80 + 0.68) MPa. The SF/BCP scaffold had good biocompatibility, under the electron microscope, the cells can be smoothly attached to and propagated on the scaffold. After loading the osteoblasts, it showed excellent osteogenic capacity in the rat model. The SF/BCP scaffold can highly simulate the micro-environment of natural bone formation and can meet the requirements of tissue engineering. The SF/BCP biomimetic porous scaffold has excellent physical properties and biocompatibility. It can highly simulate the natural bone matrix composition and microenvironment, and can promote the adhesion and proliferation of osteoblasts. The SF/BCP scaffold has good ectopic osteogenesis after loading with osteoblasts, which can meet the requirements of scaffold materials in tissue engineering, and has broad application prospects in clinical application.


Asunto(s)
Biomimética , Regeneración Ósea/fisiología , Fibroínas/química , Hidroxiapatitas/química , Andamios del Tejido , Células 3T3 , Naranja de Acridina , Fosfatasa Alcalina/metabolismo , Animales , Materiales Biocompatibles , Proliferación Celular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ensayo de Materiales , Ratones , Microscopía Electrónica de Rastreo , Imagen Óptica , Osteogénesis , Ratas , Coloración y Etiquetado
9.
J Sci Food Agric ; 98(7): 2617-2623, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29064580

RESUMEN

BACKGROUND: This study investigates a novel hydrogel synthesis method and its bio-release property. This hydrogel, with a three-dimensional network structure based on Auricularia polytricha ß-glucan, was characterised by means of Fourier transform infrared spectroscopy, 1 H NMR and scanning electron microscopy. Vitamin B12 (VB12 , cobalamin) as a hydrophilic functional food component was entrapped into these hydrogels. The in vitro release profile of VB12 was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). RESULTS: The results showed that the hydrogel had medium pore size from 30 to 300 µm, and the swelling ratio increased with the degree of substitution. The hydrogel demonstrated good stability in SGF and bio-release capability in SIF for VB12 . The accumulated release rate is about 80% in SIF and below 20% in SGF, which indicated the significant different release property in stomach and intestine. CONCLUSION: The Auricularia polytricha ß-glucan-based hydrogel has a good swelling ratio, pepsin stability and pancrelipase-catalysed biodegradation property. The bio-release rate is significantly different in SIF and SGF, which indicated that this hydrogel could be a good intestinal target carrier of VB12 . © 2017 Society of Chemical Industry.


Asunto(s)
Basidiomycota/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Extractos Vegetales/química , Vitamina B 12/química , beta-Glucanos/química , Sistemas de Liberación de Medicamentos/instrumentación , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Vitamina B 12/farmacología
10.
PLoS Pathog ; 11(1): e1004613, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25615690

RESUMEN

Enterovirus 71 (EV71) is the most virulent pathogen among enteroviruses that cause hand, foot and mouth disease in children but rarely in adults. The mechanisms that determine the age-dependent susceptibility remain largely unclear. Here, we found that the paucity of invariant natural killer T (iNKT) cells together with immaturity of the immune system was related to the susceptibility of neonatal mice to EV71 infection. iNKT cells were crucial antiviral effector cells to protect young mice from EV71 infection before their adaptive immune systems were fully mature. EV71 infection led to activation of iNKT cells depending on signaling through TLR3 but not other TLRs. Surprisingly, iNKT cell activation during EV71 infection required TLR3 signaling in macrophages, but not in dendritic cells (DCs). Mechanistically, interleukin (IL)-12 and endogenous CD1d-restricted antigens were both required for full activation of iNKT cells. Furthermore, CD1d-deficiency led to dramatically increased viral loads in central nervous system and more severe disease in EV71-infected mice. Altogether, our results suggest that iNKT cells may be involved in controlling EV71 infection in children when their adaptive immune systems are not fully developed, and also imply that iNKT cells might be an intervention target for treating EV71-infected patients.


Asunto(s)
Enterovirus Humano A/inmunología , Infecciones por Enterovirus/inmunología , Inmunidad Celular , Macrófagos/inmunología , Células T Asesinas Naturales/inmunología , Receptor Toll-Like 3/fisiología , Animales , Células Cultivadas , Infecciones por Enterovirus/genética , Humanos , Inmunidad Celular/genética , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Células T Asesinas Naturales/metabolismo , Transducción de Señal/inmunología
11.
J Virol ; 89(21): 10860-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26292317

RESUMEN

UNLABELLED: Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot, and mouth disease (HFMD) in children. The host defense mechanisms against CVA16 infection remain almost entirely unknown. Unlike previous observations with enterovirus 71 (EV71) infection, here we show that gamma interferon (IFN-γ) or invariant NK T cell deficiency does not affect disease development or the survival of CVA16-infected mice. In contrast, type I interferon receptor deficiency resulted in the development of more severe disease in mice, and the mice had a lower survival rate than wild-type mice. Similarly, a deficiency of Toll-like receptor 3 (TLR3) and TRIF, but not other pattern recognition receptors, led to the decreased survival of CVA16-infected mice. TLR3-TRIF signaling was indispensable for the induction of type I interferons during CVA16 infection in mice and protected young mice from disease caused by the infection. In particular, TRIF-mediated immunity was critical for preventing CVA16 replication in the neuronal system before disease occurred. IFN-ß treatment was also found to compensate for TRIF deficiency in mice and decreased the disease severity in and mortality of CVA16-infected mice. Altogether, type I interferons induced by TLR3-TRIF signaling mediate protective immunity against CVA16 infection. These findings may shed light on therapeutic strategies to combat HFMD caused by CVA16 infection. IMPORTANCE: Hand, foot, and mouth disease (HFMD) is a major threat to public health in the Asia-Pacific region. Both CVA16 and EV71 are major pathogens that are responsible for HFMD. The majority of research efforts have focused on the more virulent EV71, but little has been done with CVA16. Thus far, host immune responses to CVA16 infection have not yet been elucidated. The present study discovered an initial molecular mechanism underlying host protective immunity against CVA16 infection, providing the first explanation for why CVA16 and EV71 cause different clinical outcomes upon infection of humans. Therefore, different therapeutic strategies should be developed to treat HFMD cases caused by these two viruses.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Infecciones por Coxsackievirus/prevención & control , Interferón Tipo I/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 3/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Animales , Infecciones por Coxsackievirus/tratamiento farmacológico , Cartilla de ADN/genética , Células Dendríticas/inmunología , Citometría de Flujo , Interferón Tipo I/metabolismo , Interferón beta/genética , Interferón beta/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Toll-Like 3/deficiencia
12.
Adv Healthc Mater ; 13(14): e2303626, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38387885

RESUMEN

Immunotherapy has emerged as an innovative strategy with the potential to improve outcomes in cancer patients. Recent evidence indicates that radiation-induced DNA damage can activate the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to enhance the antitumor immune response. Even so, only a small fraction of patients currently benefits from radioimmunotherapy due to the radioresistance and the inadequate activation of the cGAS-STING pathway. Herein, this work integrates hafnium oxide (HfO2) nanoparticles (radiosensitizer) and 7-Ethyl-10-hydroxycamptothecin (SN38, chemotherapy drug, STING agonist) into a polydopamine (PDA)-coated core-shell nanoplatform (HfO2@PDA/Fe/SN38) to achieve synergistic chemoradiotherapy and immunotherapy. The co-delivery of HfO2/SN38 greatly enhances radiotherapy efficacy by effectively activating the cGAS-STING pathway, which then triggers dendritic cells maturation and CD8+ T cells recruitment. Consequently, the growth of both primary and abscopal tumors in tumor-bearing mice is efficiently inhibited. Moreover, the HfO2@PDA/Fe/SN38 complexes exhibit favorable magnetic resonance imaging (MRI)/photoacoustic (PA) bimodal molecular imaging properties. In summary, these developed multifunctional complexes have the potential to intensify immune activation to realize simultaneous cancer Radio/Chemo/Immunotherapy for clinical translation.


Asunto(s)
Inmunoterapia , Proteínas de la Membrana , Nanopartículas , Nucleotidiltransferasas , Animales , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Inmunoterapia/métodos , Nanopartículas/química , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Línea Celular Tumoral , Humanos , Camptotecina/farmacología , Camptotecina/química , Camptotecina/análogos & derivados , Imagen Molecular/métodos , Polímeros/química , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Indoles/química , Indoles/farmacología , Femenino
13.
Biomed Microdevices ; 15(1): 151-60, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22992979

RESUMEN

Implantable sensors for continuous glucose monitoring hold great potential for optimal diabetes management. This is often undermined by a variety of issues associated with: (1) negative tissue response; (2) poor sensor performance; and (3) lack of device miniaturization needed to reduce implantation trauma. Herein, we report our initial results towards constructing an implantable device that simultaneously address all three aforementioned issues. In terms of device miniaturization, a highly miniaturized CMOS (complementary metal-oxide-semiconductor) potentiostat and signal processing unit was employed (with a combined area of 0.665 mm(2)). The signal processing unit converts the current generated by a transcutaneous, Clark-type amperometric sensor to output frequency in a linear fashion. The Clark-type amperometric sensor employs stratification of five functional layers to attain a well-balanced mass transfer which in turn yields a linear sensor response from 0 to 25 mM of glucose concentration, well beyond the physiologically observed (2 to 22 mM) range. In addition, it is coated with a thick polyvinyl alcohol (PVA) hydrogel with embedded poly(lactic-co-glycolic acid) (PLGA) microspheres intended to provide continuous, localized delivery of dexamethasone to suppress inflammation and fibrosis. In vivo evaluation in rat model has shown that the transcutaneous sensor system reproducibly tracks repeated glycemic events. Clarke's error grid analysis on the as-obtained glycemic data has indicated that all of the measured glucose readings fell in the desired Zones A & B and none fell in the erroneous Zones C, D and E. Such reproducible operation of the transcutaneous sensor system, together with low power (140 µW) consumption and capability for current-to-frequency conversion renders this a versatile platform for continuous glucose monitoring and other biomedical sensing devices.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/instrumentación , Glucosa/análisis , Miniaturización/instrumentación , Prótesis e Implantes , Piel , Animales , Técnicas Biosensibles , Electroquímica , Ácido Láctico/química , Masculino , Metales/química , Óxidos/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Alcohol Polivinílico/química , Ratas , Ratas Sprague-Dawley , Semiconductores
14.
Acta Biomater ; 162: 72-84, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931419

RESUMEN

Although radiotherapeutic efficiency has been revealed to be positively correlated with ferroptosis, the neutral/alkaline cytoplasm pH value of tumor cells remains an intrinsic challenge for efficient Fenton/Fenton-like reaction-based ferroptosis induction. Herein, PEGylated hollow mesoporous organosilica nanotheranostics (HMON)-GOx@MnO2 nanoparticles (HGMP NPs) were designed as a ferroptosis inducer, which could specifically release Mn2+ in tumor cells to activate the Fenton-like reaction for ferroptosis induction. Proton pump inhibitors (PPIs) were synchronously administered for cytoplasm pH level regulation by inhibiting V-H+-ATPases activity, enhancing Fenton-like reaction-based ferroptosis induction. Moreover, reactive oxygen species production was facilitated via the glucose oxidase triggered cascade catalytic reaction by utilizing intracellular ß-D-glucose for H2O2 self-supply and generation of additional cytoplasm H+. The PPI enhanced ferroptosis inducing nanosystem effectively inhibited tumor growth both in vitro and in vivo for tumor-specific ferroptosis induction and radiotherapy sensitization, suggesting that PPI administration could be an efficient adjuvant to reinforce Fenton/Fenton-like reaction-based ferroptosis induction for radiosensitization. STATEMENT OF SIGNIFICANCE: The cytoplasm pH value of tumor cells is typically neutral to alkaline, which is higher than that of the Fenton/Fenton-like reaction desired acidic environments, hindering its efficiency. In this study, PEGylated hollow mesoporous organosilica nanotheranostics (HMON)-GOx@MnO2 nanoparticles were synthesized as a ferroptosis inducer, which could specifically release Mn2+ via depleting glutathione and then activate the Fenton-like reaction in the tumor microenvironment. The glucose oxidase was applied for H2O2 self-supply and addition of cytoplasm H+ to further boost the Fenton-like reaction. We found that proton pump inhibitors (PPIs) increased intracellular acidification by inhibiting the activity of V-H+-ATPases to enhance the Fenton reaction-based ferroptosis induction, suggesting PPIs administration could be a feasible strategy to reinforce ferroptosis induction for radiosensitization.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Humanos , Inhibidores de la Bomba de Protones , Glucosa Oxidasa , Peróxido de Hidrógeno/farmacología , Compuestos de Manganeso/farmacología , Óxidos , Polietilenglicoles , Adenosina Trifosfatasas , Línea Celular Tumoral , Microambiente Tumoral
15.
Int J Biol Macromol ; 253(Pt 7): 127368, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838129

RESUMEN

Recyclable, non-toxic, and degradable biological substrates contribute significantly to super-wetting surfaces. In this work, we prepared magnetic micro-nano super-hydrophobic surfaces through a robust solution with magnetic modified lignin particles as the supporting structure. A novel PDMS (polydimethylsiloxane)/magnetic lignin particle (lignin@Fe3O4)/PDA sponge composite was fabricated. Through dopamine (DA) self-polymerization, covalent deposition of magnetic lignin (ML), and PDMS silane modification, the magnetic super-hydrophobic polyurethane sponge composite (Sponge-P) was synthesized so that the Fe3O4 nanoscale microspheres wrapped with microscale lignin magnetic particles adhered to the sponge surface tighter and were barely dislodged. The as-prepared Sponge-P displayed excellent flexibility and a water contact angle of up to 152.2°. The super-hydrophobic sponge prepared with the proposed method was acid-base stable (pH = 2-12), self-cleaning, and suitable for high-salinity seawater. The magnetic super-hydrophobic sponge has good oil-water separation ability and can absorb 43 times its own weight of oil. In the meantime, due to the introduction of magnetic materials into lignin, we not only constructed micro-nanostructures to improve the surface super-hydrophobicity, but also made Sponge-P have the function of magnetic recovery, which has a unique advantage in treating oily wastewater.


Asunto(s)
Vendajes , Lignina , Fenómenos Físicos , Dopamina , Fenómenos Magnéticos
16.
ACS Appl Mater Interfaces ; 14(15): 17109-17118, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380800

RESUMEN

Single molecule localization microscopy (SMLM) is indispensable in the visualization of cellular microstructures. However, current SMLM imaging materials, from organic fluorophores to quantum dots, still lack the requirement of increasing need for multiple targets of interest due to their broad emission. Here, by one-step encapsulating hydrophilic cesium lead bromide perovskite nanocrystals (CsPbBr3 NCs) into functionalized polyethylene glycol (PEG), a core-shell nanocomposite of CsPb(Cl(1-x)/Brx)3@PEG (0 < x < 1) was presented as a wavelength-tunable fluorescent probe with the narrow full width at half-maximum (fwhm) as 11 nm. The layer of functionalized PEG endows CsPbBr3 NCs with a broad spectral tunability from 521 to 431 nm, superior photostability for several years, and the ability to be further surface functionalized. The CsPb(Cl(1-x)/Brx)3@PEG exhibits a sub-10 nm localization precision and 10-fold enhanced spatial resolution. Using exosomes with small sizes less than 150 nm as the imaging target, CsPb(Cl(1-x)/Brx)3@PEG realized the distinction of two adjacent exosomes by SMLM. Moreover, after being modified with biotin, CsPb(Cl(1-x)/Brx)3@PEG was universally used for SMLM imaging of cellular microstructures. The excellent photostability and narrow fwhm indicated that such a CsPbBr3-based nanoprobe has great potential as a commercial dye for multitarget super-resolution bioimaging applications.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Colorantes Fluorescentes/química , Nanopartículas/química , Polietilenglicoles , Puntos Cuánticos/química , Imagen Individual de Molécula , Agua
17.
Biosens Bioelectron ; 218: 114747, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36198238

RESUMEN

Thoracic aortic aneurysm (TAA), in which arteries enlarge asymptomatically over time until dissection or rupture occurs, is a serious health risk. The mainstay of TAA treatment remains surgical repair due to the lack of effective drugs. The complex etiology and pathogenesis of TAA, including hemodynamic alterations and genetic factors, lead to inaccuracies in preclinical models for drug screening. Previously, our group designed an aorta smooth muscle-on-a-chip to emulate human aorta physiology and pathophysiology and screened three promising therapeutic drugs targeting mitochondrial dynamics in TAA. On this foundation, we updated the one-channel chip to an eighteen-well chip platform with four polydimethylsiloxane layers. Benefiting from this high-throughput chip, we rapidly screened multiple drugs simultaneously using distinct cell lines in vitro. In addition, we observed the abnormal activation of hypoxia-inducible factor 1-alpha (HIF-1alpha) in aortas from TAA patients by Western blot and bioinformatics analyses. Intriguingly, this phenomenon was replicated only when smooth muscle cells (SMCs) were strained on the chip. We then screened seven specific HIF-1alpha inhibitors and selected the two most effective drugs (2-methoxyestradiol and digoxin) by quantitative PCR and colorimetric methods. The results demonstrated that these two drugs can improve respiratory chain function and rescue the SMC contractile phenotype, showing applicability for the clinical treatment of TAA. This high-throughput aorta smooth muscle-on-a-chip will become a potential preclinical model for TAA drug screening.


Asunto(s)
Aneurisma de la Aorta Torácica , Técnicas Biosensibles , Humanos , Aneurisma de la Aorta Torácica/tratamiento farmacológico , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , 2-Metoxiestradiol/metabolismo , Evaluación Preclínica de Medicamentos , Dispositivos Laboratorio en un Chip , Aorta/metabolismo , Aorta/patología , Digoxina , Dimetilpolisiloxanos , Factor 1 Inducible por Hipoxia/metabolismo , Músculo Liso/metabolismo , Músculo Liso/patología
18.
Biomaterials ; 277: 121072, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454373

RESUMEN

Various conventional treatment strategies for volumetric muscle loss (VML) are often hampered by the extreme donor site morbidity, the limited availability of quality muscle flaps, and complicated, as well as invasive surgical procedures. The conventional biomaterial-based scaffolding systems carrying myoblasts have been extensively investigated towards improving the regeneration of the injured muscle tissues, as well as their injectable forms. However, the applicability of such designed systems has been restricted due to the lack of available vascular networks. Considering these facts, here we present the development of a unique set of two minimally invasively injectable modular microtissues, consisting of mouse myoblast (C2C12)-laden poly(lactic-co-glycolic acid) porous microspheres (PLGA PMs), or the micro-muscles, and human umbilical vein endothelial cell (HUVEC)-laden poly(ethylene glycol) hollow microrods (PEG HMs), or the microvessels. Besides systematic in vitro investigations, the myogenic performance of these modular composite microtissues, when co-injected, was explored in vivo using a mouse VML model, which confirmed improved in situ muscle regeneration and remolding. Together, we believe that the construction of these injectable modular microtissues and their combination for minimally invasive therapy provides a promising method for in situ tissue healing.


Asunto(s)
Materiales Biocompatibles , Regeneración , Inyecciones , Microesferas , Músculo Esquelético , Andamios del Tejido
19.
J Chromatogr A ; 1640: 461948, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33561708

RESUMEN

Fast-throughput and cost reduction of current purification platforms are becoming increasing requests during antibody manufacture. The macroporous-matrix absorbents have presented extensive potentiality in improving operational throughput during purification of macromolecule. And meanwhile the peptide ligand has become a promising alternative to recombinant protein ligands for cost reduction of chromatographic purification. Therefore, here we designed a functionalized microspheres resin with both macroporous matrix of polymerized glycidyl methacrylate and ethylene glycol dimethacrylate (PGMA-EDMA) and peptide ligand of hexapeptide (FYEILH). In order to circumvent the steric effect of peptides and amplify the binding sites on macroporous matrix, the peptide ligand was coupled on a liner PGMA polymer brushes grafted on microspheres. Comparing to the conventional agarose-matrix resin and the general peptide-grafted microspheres, the functionalized microspheres presented excellent permeability and high capacity to rapid loading hIgG by maintaining a stable level of dynamic binding capacity at fast flow rate above 110 column volume per hour (cv/h) and very short residence time below 0.5 min. Such functionalized microspheres provide a facile and broadly applicable strategy to develop the attractive candidate for rapid and cost-reduced purification of antibody.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Inmunoglobulina G/aislamiento & purificación , Microesferas , Péptidos/química , Polímeros/química , Adsorción , Animales , Células CHO , Cromatografía , Cricetulus , Difusión , Humanos , Ligandos , Permeabilidad , Polimerizacion , Porosidad , Dominios Proteicos , Proteínas Recombinantes/química , Resinas Sintéticas/química , Sefarosa/química , Albúmina Sérica Bovina/química , Proteína Estafilocócica A/química , Propiedades de Superficie
20.
Food Res Int ; 137: 109380, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233082

RESUMEN

Beta-galactosidase (ß-gal), catalyzing the transformation of lactose to glucose and galactose, had been encapsulated in ß-chitosan nanoparticles (ß-CS NPs) in previous work, but they were prone to aggregation and disscociation, resulting in poor bioavailability of ß-gal. Herein, we developed cellulose nanocrystals (CNC, as stabilizers and fillers) stabilized ß-gal loaded low molecular weight (LMW) ß-CS NPs through ionic gelation technology to enhance enzyme activity and further control in vitro release of ß-gal. Results showed that particle size and Zeta potential (ZP) of CNCs stabilized ß-gal loaded CS NPs were 143.20 nm and -34.70 mV under the optimal conditions, respectively. Structural analysis were employed to study the incorporation of ß-gal and CNC into ß-CS NPs. In vitro release study conducted at pH 4.5 and 7.4 showed that both ß-gal loaded ß-CS NPs and CNC stabilized ones retained the release of ß-gal for over 12 h. Moreover, CNC stabilized ß-gal loaded ß-CS NPs retained higher ß-gal activity (81.23%) than that of controls (30%) within 2 h. Therefore, it was indicated that CNC incorporated ß-CS NPs could serve as non-toxic and effective carriers of ß-gal for the treatment of lactose intolerance.


Asunto(s)
Quitosano , Nanopartículas , Celulosa , Tamaño de la Partícula , beta-Galactosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA