Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Ecotoxicol Environ Saf ; 271: 115976, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232524

RESUMEN

Exposure routes are important for health risk assessment of chemical risks. The application of physiologically based toxicokinetic (PBTK) models to predict concentrations in vivo can determine the effects of harmful substances and tissue accumulation on the premise of saving experimental costs. In this study, Tri(2-chloroethyl) phosphate (TCEP), an organophosphate ester (OPE), was used as an example to study the PBTK model of mice exposed to different exposure doses by multiple routes. Different routes of exposure (gavage and intradermal injection) can cause differences in the concentration of chemicals in the organs. TCEP that enters the body through the mouth is mainly concentrated in the gastrointestinal tract and liver. However, the concentrations of chemicals that enter the skin into the mice are higher in skin, rest of body, and blood. In addition, TCEP was absorbed and accumulated very rapidly in mice, within half an hour after a single exposure. We have successfully established a mouse PBTK model of the TCEP accounting for multiple exposure Routes and obtained a series of kinetic parameters. The model includes blood, liver, kidney, stomach, intestine, skin, and rest of body compartments. Oral and dermal exposure route was considered for PBTK model. The PBTK model established in this study has a good predictive ability. More than 70% of the predicted values deviated from the measured values by less than 5-fold. In addition, we extrapolated the model to humans. A human PBTK model is built. We performed a health risk assessment for world populations based on human PBTK model. The risk of TCEP in dust is greater through mouth than through skin. The risk of TCEP in food of Chinese population is greater than dust.


Asunto(s)
Fosfatos , Fosfinas , Piel , Ratones , Humanos , Animales , Toxicocinética , Polvo , Modelos Biológicos
2.
Environ Sci Technol ; 57(14): 5714-5725, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995247

RESUMEN

Tire wear particles (TWPs) exposed to the aquatic environment are rapidly colonized by microorganisms and provide unique substrates for biofilm formation, which potentially serve as vectors for tetracycline (TC) to influence their behaviors and potential risks. To date, the photodegradation capacity of TWPs on contaminants due to biofilm formation has not been quantified. To accomplish this, we examined the ability of virgin TWPs (V-TWPs) and biofilm-developed TWPs (Bio-TWPs) to photodegrade TC when exposed to simulated sunlight irradiation. V-TWPs and Bio-TWPs accelerated the photodegradation of TC, with rates (kobs) of 0.0232 ± 0.0014 and 0.0152 ± 0.0010 h-1, respectively (kobs increased by 2.5-3.7 times compared to that for only TC solution). An important factor of increased TC photodegradation behavior was identified and linked to the changed reactive oxygen species (ROS) of different TWPs. The V-TWPs were exposed to light for 48 h, resulting in more ROS for attacking TC, with hydroxyl radicals (•OH) and superoxide anions (O2•-) playing a dominant role in TC photodegradation measured using scavenger/probe chemicals. This was primarily due to the greater photosensitization effects and higher electron-transfer capacity of V-TWPs in comparison to Bio-TWPs. In addition, this study first sheds light on the unique effect and intrinsic mechanism of the crucial role of Bio-TWPs in TC photodegradation, enhancing our holistic understanding of the environmental behavior of TWPs and the associated contaminants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Fotólisis , Plásticos , Especies Reactivas de Oxígeno/química , Antibacterianos , Tetraciclina , Contaminantes Químicos del Agua/análisis
3.
J Environ Manage ; 344: 118745, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562255

RESUMEN

Efficient removal of perfluoroalkyl acids (PFAAs), especially short-chain ones, from contaminated water is of great challenge and is urgently called for so as to safeguard the ecosystem and human health. Herein, polypyrrole (PPy) functionalized biochar (BC) composites were innovatively synthesized by an in situ self-sacrificial approach to allow efficient capture of PFAAs with different chain lengths. Compared with conventional PPy-based composites synthesized by direct polymerization using FeCl3 as an oxidizing agent, PPy/BC composites were fabricated utilizing freshly generated Fe3+ as an oxidizing agent from self-sacrificial Fe3O4 for pyrrole monomers in situ polymerizing on BC. As a result, with the support of BC and gradual release of Fe3+, PPy overcame its tendency to aggregate and became uniformly dispersed on BC, and meanwhile, PPy could well tailor the surface chemistry of BC to endow its positively charged surface. Consequently, the composites exhibited strong sorption capacities of 3.89 and 1.53 mmol/g for short-chain perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), 2.55 and 1.22 mmol/g for long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, which were superior to those of pristine BC, commercial activated carbon, and anion exchange resins reported. Additionally, they could effectively remove 17 different classes of per- and polyfluoroalkyl substances (PFAS) (removal >95%) from actual PFAS-contaminated water, and the spent sorbent could be well regenerated and reused at least 5 times. An integrated analysis indicated that such an outstanding PFAA sorption performance on PPy/BC composites could be mainly attributed to surface adsorption enhanced by electrostatic attractions (anion exchange interaction) with the traditional hydrophobic interaction and pore filling of less contribution, particularly for short-chain analogues. These results are expected to inform the design of BC with greater ability to remove PFAS from water and the new sorbent could help water facilities comply with PFAS regulations.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Polímeros , Carbón Orgánico/química , Pirroles , Ecosistema , Contaminantes Químicos del Agua/química , Agua , Fluorocarburos/análisis , Oxidantes
4.
Environ Sci Technol ; 56(14): 10149-10160, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35793149

RESUMEN

Microplastics (MPs) interact frequently with dissolved organic matter (DOM) commonly found in the environment, but information on the aging behavior of MPs under the participation of DOM is still lacking. Thus, the polystyrene microplastic (PSMP) aging process with DOM participation was systematically studied by electron paramagnetic resonance spectroscopy, high-performance liquid chromatography, Fourier transform infrared (FTIR) spectroscopy, and two-dimensional correlation spectroscopy analyses under dark and ultraviolet (UV) light conditions. DOM was found to promote electron transfer to generate reactive oxygen species (ROS) under dark conditions and the aging of PSMPs, while the process of DOM generating ROS under UV light was more susceptible to photoelectrons and accelerated the aging process of PSMPs. However, among the four DOM types, fulvic acid (FA) has a more significant promoting effect on the aging process of PSMPs than humic acid, which can be attributed to the stronger conversion ability of FA to semiquinone radicals. Density functional theory calculations are used to describe the difference in the aging process of different structures of plastics with the participation of DOM. This study provides a necessary theoretical basis for the study of the migration of MPs in groundwater and deep surface water.


Asunto(s)
Microplásticos , Plásticos , Materia Orgánica Disuelta , Sustancias Húmicas/análisis , Poliestirenos , Especies Reactivas de Oxígeno , Rayos Ultravioleta
5.
Environ Sci Technol ; 56(17): 12267-12277, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35952376

RESUMEN

Microplastics in the environment can be colonized by microbes capable of forming biofilms, which may act as reactive coatings to affect the bioaccessibility of pollutants in organisms. This study investigated the dynamic evolution of biofilm colonization on microplastics and its impacts and mechanisms on the bioaccessibility of microplastic-associated sulfamethazine (SMT) via microcosm incubation in surface water and sediment. After 60 days of incubation, the microbial communities formed in microplastics were distinct and more diverse than those untethered in surroundings, and photoaging treatment decreased the affinity of biofilms on microplastics due to decreased hydrophobicity. Biofilm formation further enhanced the desorption and bioaccessibility of microplastic-sorbed SMT in organisms. In vitro experiments indicated that the critical effects were mainly related to the stronger interaction of gastrointestinal components (i.e., pepsin, bovine serum albumin (BSA), and NaT) with biofilm components (e.g., extracellular polymer substances) than with the pure surface of microplastics, which competed for binding sites in microplastics for SMT more significantly. Photoaging decreased the enhancing effects of biofilms due to their lower accumulation in aged microplastics. This study is the first attempt to reveal the role of biofilms in the bioaccessibility of microplastics with associated antibiotics and provide insights into the combined risk of microplastics in the environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Antibacterianos/farmacología , Organismos Acuáticos , Biopelículas , Monitoreo del Ambiente , Agua Dulce/química , Plásticos/farmacología , Sulfametazina/farmacología , Contaminantes Químicos del Agua/química
6.
Environ Sci Technol ; 56(2): 779-789, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34964354

RESUMEN

Nitrogen-containing microplastics (N-MPs) are widely present in the atmosphere, but their potential health risks have been overlooked. In this study, the formation of persistent aminoxyl radicals (PAORs) and reactive nitrogen species (RNSs) on the N-MPs under light irradiation was investigated. After photoaging, an anisotropic triplet with the g-factor of ∼2.0044, corresponding to PAORs, was detected on the nonaromatic polyamide (PA) rather than amino resin (AmR) by electron paramagnetic resonance and confirmed by density functional theory calculations. The generated amine oxide portions on the photoaged PA were identified using X-ray photoelectron spectroscopy and Raman spectroscopy, which were considered to be the main structural basis/precursors of a PAOR. Surprisingly, RNSs were also observed on the irradiated PA. The generated ·NO due to the aphotolysis of nitrone groups simultaneously reacted with peroxide radicals and O2·- to yield ·NO2 and peroxynitrite, respectively, which were responsible for peroxyacyl nitrates (PAN) and CO3·- formation. Besides, a significantly higher oxidative potential and reductive potential were observed for the aged PA than AmR, which is assigned to the abundant RNSs, organic hydroperoxides and PANs, and a strong ability to transfer electrons from PAOR, respectively. This work provides important information for the potential risks of airborne N-MPs and may serve as a guide for future toxicological assessments.


Asunto(s)
Microplásticos , Plásticos , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Nitrógeno , Especies de Nitrógeno Reactivo
7.
Environ Sci Technol ; 56(24): 17785-17794, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36472936

RESUMEN

Iron (hydr)oxides as a kind of natural mineral actively participate in the transformation of organic pollutants, but there is a large knowledge gap in their impacts on photochemical processes of microplastics (MPs). This study is the first to examine the degradation of two ordinary plastic materials, polyethylene (PE) and polypropylene (PP), mediated by iron (hydr)oxides (goethite and hematite) under simulated solar light irradiation. Both iron (hydr)oxides significantly promoted the degradation of MPs (particularly PP) with a greater effect by goethite than hematite, related to hydroxyl radical (•OH) produced by iron (hydr)oxides. Under light irradiation, the surface Fe(II) phase catalyzed the production of H2O2 and promoted the release of Fe2+, leading to the subsequent light-driven Fenton reaction which produced a large amount of •OH. As the iron (hydr)oxides were modified with NaF at various concentrations, the activity of the surface Fe(II) as well as the release of Fe2+ were greatly reduced, and thus the •OH formation and MP degradation were depressed remarkably. It is worth noting that the surface hydroxyl groups (especially ≡FeOH) affected the reaction kinetics of •OH by regulating the activity of Fe species. These findings unveil the distinct impacts and intrinsic mechanisms of iron (hydr)oxides in influencing the photodegradation of MPs.


Asunto(s)
Hierro , Óxidos , Microplásticos , Plásticos , Fotólisis , Peróxido de Hidrógeno , Compuestos Férricos , Oxidación-Reducción , Compuestos Ferrosos
8.
Environ Sci Technol ; 53(14): 8177-8186, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31246433

RESUMEN

Microplastics (MPs) are presumed to be inert during aging under ambient conditions. In this study, four types of virgin MPs, including polystyrene (PS), phenol-formaldehyde resin (PF), polyethylene (PE), and polyvinyl chloride (PVC), were aged under simulated solar light irradiation. Surprisingly, several environmentally persistent free radicals (EPFRs), which are considered to be a type of emerging contaminant, were detected on the irradiated PS and PF, rather than PE and PVC, by electron paramagnetic resonance (EPR) spectroscopy. Depending on the photoaging duration time, the characteristic g-factors of the EPFRs produced on PS and PF were 2.0044-2.0049 and 2.0043-2.0044, respectively. The generated EPFRs on PS and PF decayed rapidly at the initial stage and then slowly disappeared with the elapsed aging time. Analyses by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) suggested that MPs might experience chemical chain scission, O2/H2O addition, and EPFR formation under the light irradiation. Accompanying with the formation of EPFRs, reactive oxygen species, such as O2•- and •OH, were also observed. The findings provide a novel insight to evaluate the potential hazards of MPs to organisms and ecosystems.


Asunto(s)
Ecosistema , Plásticos , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Especies Reactivas de Oxígeno
9.
Chemphyschem ; 15(3): 400-14, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24470221

RESUMEN

Organic molecules can transform photons into Angstrom-scale motions by undergoing photochemical reactions. Ordered media, for example, liquid crystals or molecular crystals, can align these molecular-scale motions to produce motion on much larger (micron to millimeter) length scales. In this Review, we describe the basic principles that underlie organic photomechanical materials, starting with a brief survey of molecular photochromic systems that have been used as elements of photomechanical materials. We then describe various options for incorporating these active elements into a solid-state material, including dispersal in a polymer matrix, covalent attachment to a polymer chain, or self-assembly into molecular crystals. Particular emphasis is placed on ordered media, such as liquid-crystal elastomers and molecular crystals, that have been shown to produce motion on large (micron to millimeter) length scales. We also discuss other mechanisms for generating photomechanical motion that do not involve photochemical reactions, such as photothermal expansion and photoinduced charge transfer. Finally, we identify areas for future research, ranging from the study of basic phenomena in solid-state photochemistry, to molecular and host matrix design, and the optimization of photoexcitation conditions. The ultimate realization of photon-fueled micromachines will likely involve advances spanning the disciplines of chemistry, physics and engineering.


Asunto(s)
Procesos Fotoquímicos , Ciclopentanos/química , Fluorocarburos/química , Cristales Líquidos/química , Nanoestructuras/química , Fotones , Polímeros/química
10.
Ecotoxicol Environ Saf ; 106: 226-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24859708

RESUMEN

Five types of biochars prepared from four crop straws and one wood shaving at 600 °C were characterized, and their sorption to Cd(II) were determined to investigate the differences in capacity to function as sorbents to heavy metals. Surface areas and pore volumes of the biochars were inversely correlated to the lignin content of raw biomass. The biochars derived from crop straws displayed more developed pore structure than wood char due to the higher lignin content of wood. Sorption capacity of the biochars to Cd(II) followed the order of corn straw>cotton straw>wheat straw>rice straw>poplar shaving, which was not strictly consistent with the surface area of the chars. The surface characteristics of chars before and after Cd(II) sorption were investigated with scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy, which suggested that the higher sorption of Cd(II) on corn straw chars was mainly attributed to cation exchange, surface precipitation of carbonate, and surface complexation with oxygen-containing groups. This study indicated that crop straw biochars exhibit distinct sorption capacities to heavy metals due to various surface characteristics, and thus the sorption efficiency should be carefully evaluated specific to target contaminant.


Asunto(s)
Carbón Orgánico/química , Carbón Orgánico/metabolismo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Adsorción , Biodegradación Ambiental , Biomasa , Productos Agrícolas/química , Lignina/análisis , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
11.
Environ Int ; 183: 108404, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154320

RESUMEN

Wastewater treatment plants (WWTP) are important sources of aerosol-derived dissolved organic matter (ADOM) which may threaten human health via the respiratory system. In this study, aerosols were sampled from a typical WWTP to explore the chemical molecular diversity, molecular ecological network, and potential toxicities of the ADOM in the aerosols. The high fluorescence index (>1.9) and biological index (0.66-1.17) indicated the strong autogenous microbial source characteristics of the ADOM in the WWTP. DOM and microbes in the wastewater were aerosolized due to strong agitation and bubbling in the treatment processes, and contributed to 74 % and 75 %, respectively, of the ADOM and microbes in the aerosols. The ADOM was mainly composed of CHO and CHOS accounting for 35 % and 29 % of the total number of molecules, respectively, with lignin-like (69 %) as the major constituent. 49 % of the ADOM transformations were thermodynamically limited, and intragroup transformations were easier than intergroup transformations. Bacteria in the aerosols involved in ADOM transformations exhibited both cooperative and divergent behaviors and tended to transform carbohydrate-like and amino sugar/protein-like into recalcitrant lignin-like. The microbial compositions were affected by atmosphere temperature and humidity indirectly by modulating the properties of ADOM. Tannin-like, lignin-like, and unsaturated hydrocarbon-like molecules in the ADOM were primary toxicity contributors, facilitating the expression of inflammatory factors IL-ß (2.2-5.4 folds), TNF-α (3.5-7.0 folds), and IL-6 (3.5-11.2 folds), respectively.


Asunto(s)
Materia Orgánica Disuelta , Purificación del Agua , Humanos , Lignina , Aguas Residuales , Aerosoles
12.
Sci Total Environ ; 904: 166473, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659565

RESUMEN

In this study, a combination of property analysis and high-throughput sequencing was used to investigate the microbial colonization ability and their community structures and functions in polypropylene microplastics (PPMPs), polystyrene microplastics (PSMPs) and montmorillonite (MMT), respectively as the representatives of artificial and natural substrates in aerobic sludge treatment. After 45 d of incubation, the surface properties of substrates were altered with the increased oxygen functional groups and surface roughness, indicating microbial settlement. Moreover, MPs had different microbial structures from that of MMT, and PSMPs exhibited higher microbial diversity and abundance than PPMPs and MMT. Also, these substrates changed the inherent ecological niche in sludge. Especially, the abundance of some pathogens (e.g., Pseudomonas, Klebsiella and Flavobacterium) was increased in MPs, and the disease risk of Kyoto Encyclopedia of Genes and Genomes metabolic pathway (e.g., Infectious diseases: Bacterial, Infectious diseases: Parasitic and Immune diseases) was higher. Also, the presence of MPs inhibited the decomposition of organic matter including soluble chemical oxygen demand and protein compared to natural substrates. The findings revealed the crucial vector role of MPs for microbes and the effect on aerobic sludge treatment, highlighting the necessity of MP removal in sludge.


Asunto(s)
Enfermedades Transmisibles , Microplásticos , Humanos , Plásticos , Aguas del Alcantarillado , Arcilla , Polipropilenos , Poliestirenos
13.
Brain Behav ; 13(3): e2890, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738135

RESUMEN

BACKGROUND: Ischemic stroke is a clinical emergency caused by insufficient intracranial blood supply, which eventually leads to brain tissue necrosis and neurological impairment. Predictive nursing intervention has achieved impressive success in the nursing of multiple surgeries. However, the role of predictive nursing intervention in the care of patients with ischemic stroke remains unclear. METHODS: This study was a randomized controlled trial. Based on the inclusion and exclusion criteria, 126 patients were randomly assigned into two groups, namely the control group and the predictive nursing intervention group. Both groups were treated with thrombolytic therapy with alteplase. The patients in the control group were given routine nursing intervention and the predictive nursing intervention group received additional predictive care. Neurologic functions and cognitive impairment were evaluated by National Institutes of Health Stroke Scale (NIHSS), Fugl-Meyer assessment (FMA), Montreal cognitive assessment (MoCA), and mini-mental state examination (MMSE) scales, respectively. Door-to-Needle Times, venous thromboembolism (VTE)-related parameters, and complications were recorded. RESULTS: Predictive nursing intervention significantly shortened the Door-to-Needle Times and enhanced the peak/average femoral venous blood flow and femoral venous diameter. In addition, predictive nursing intervention improved the NIHSS, FMA, MMSE, and MoCA scores and remarkably reduced the recurrence of ischemic stroke, deep vein thrombosis and gingival bleeding. CONCLUSION: Predictive nursing intervention is beneficial to improve the effects of thrombolytic therapy in patients with ischemic stroke, which improves the neurological, cognitive and motor functions of patients, and reduces the occurrence of complications, suggesting an important clinical application value.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular Isquémico/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico , Activador de Tejido Plasminógeno , Pruebas de Estado Mental y Demencia
14.
Environ Pollut ; 337: 122566, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717897

RESUMEN

Surfactant-enhanced multiphase extraction is recognized as an effective method to remove petroleum related contaminants from soil. Owing to the high biodegradability and low biotoxicity, plant-derived surfactants are considered as promising alternatives to synthetic surfactants. In this study, two plant surfactants were respectively extracted from Sapindus mukorossi (PS-1) and Fructus Gleditsiae sinensis (PS-2). Component analysis and chemical structure characterization indicated that triterpenoid saponins were the main components of both plant surfactants. The removal efficiency of tetradecane by PS-1 and PS-2 was 75.6% and 62.2%, respectively, which was comparable with that by Tween-80. The results were validated by column leaching experiments. The abundant hydroxyl, aldehyde and epoxy groups in the plant surfactants made them readily self-assemble to form micelles via hydrogen bonding and van der Waals interactions, which promoted the solubilization of tetradecane in the liquid phase, particularly at appropriate ionic strength and temperature. Due to the reduced electrostatic attraction by the acidic and ionizable functional groups in the plant surfactants, their sorption capacities (0.15 and 0.24 g1-n Ln·kg-1 for PS-1 and PS-2, respectively) onto the soil were much lower than that of Tween-80, making them much easier to be extracted from contaminated soil. This study would deepen our understanding to improve the performances of plant surfactants in petroleum hydrocarbons-contaminated soil remediation.


Asunto(s)
Petróleo , Contaminantes del Suelo , Tensoactivos/química , Polisorbatos , Petróleo/análisis , Suelo , Hidrocarburos , Contaminantes del Suelo/análisis , Biodegradación Ambiental
15.
J Hazard Mater ; 445: 130564, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055972

RESUMEN

Dissolved organic matter (DOM) leaching from biodegradable microplastics (BMPs) and its characteristics and corresponding environmental implication are rarely investigated. In this study, the main component of DOM leachate from the two BMPs (polyadipate/butylene terephthalate (PBAT)/polycaprolactone (PCL)) was verified by using excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). The PBAT-DOM (PBOM) was aromatized and terrestrial. Comparatively, PCL-DOM (PLOM) had low molecular weight. PBOM contained protein-like components while PLOM contained tryptophan and tyrosine components. Interestingly, both PBOM and PLOM could accelerate the decomposition and oxidation of coexisting polystyrene (PS) under light irradiation. Further, the difference in composition and the properties of BMPs-DOM significantly affected its photochemical activity. The high territoriality and protein-like component of PBOM significantly promoted the generation of 1O2 and O2•-, which caused faster disruptions to the backbone of PS. Simultaneously, the microbial community's richness, diversity, and metabolism were obviously improved under the combined pressure of aged PS and BMPs-DOM. This study threw light on the overlooked contribution of DOM derived from BMPs in the aging process of NMPs and their impact on the microbial community and provided a promising strategy for better understanding of combined MPs' fate and environmental risk.


Asunto(s)
Plásticos , Envejecimiento de la Piel , Microplásticos , Materia Orgánica Disuelta , Espectrometría de Fluorescencia , Análisis Factorial , Sustancias Húmicas
16.
J Environ Sci (China) ; 24(9): 1549-58, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23520861

RESUMEN

Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.


Asunto(s)
Carbón Mineral/análisis , Hidrocarburos Aromáticos/química , Nanotubos de Carbono/química , Polímeros/química , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Microscopía Electrónica de Rastreo , Níquel/química , Purificación del Agua
17.
Int J Biol Macromol ; 194: 254-263, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871654

RESUMEN

The synthesis of lignin-based graphene quantum dots (GQDs) with excellent fluorescence stability, quantum yield, and biocompatibility for sensitive and selective detection of Fe3+ and ascorbic acid (AA) has remained a challenging endeavor. Using an acidolysis process with 17.5% nitric acid followed by hydrothermal treatment at 200 °C, this study provided an improved synthesis route for the production of high-quality GQDs from alkali lignin. The nitrogen-doped GQDs exhibit remarkable fluorescence stability under a wide range of pH (3-10), duration (1-12 h), and [NaCl] (0-1000 mM) conditions, and have a high quantum yield of 28%. The GQDs or GQDs/Fe3+ sensing systems ([GQDs] at 50 mg L-1, [Fe3+] at 500 µmol L-1, and UV excitation at 370 nm) for fluorescence sensing of Fe3+ or AA have excellent sensitivity, selectivity, and reproducibility. For Fe3+ and AA, the limit of detection is 1.49 and 1.62 µmol L-1, respectively. Mechanism investigation shows that photoluminescence quenching is caused by the formation of GQDs-Fe3+ complexes, whereas fluorescence recovery is due to Fe3+ reduction by AA.


Asunto(s)
Ácido Ascórbico/análisis , Técnicas Biosensibles , Compuestos Férricos/análisis , Grafito/química , Lignina/química , Puntos Cuánticos/química , Supervivencia Celular , Fenómenos Químicos , Técnicas de Química Sintética , Fluorescencia , Grafito/síntesis química , Humanos , Microscopía de Fuerza Atómica , Puntos Cuánticos/ultraestructura
18.
Sci Total Environ ; 806(Pt 4): 150953, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656580

RESUMEN

Microplastics (MPs), as a new type of pollutants, have attracted wide attention especially in recent years, but there was insufficient research on the distribution and characteristics of MPs in urban park water body. In this study, the pollution of MPs in water and sediment of Xi'an, the largest city in northwest China, was investigated. The MPs concentration in the surface water and sediment was 2900-6970 items/m3 and 940-3560 items/kg, respectively. According to the urban functions, the parks were divided into residential areas, commercial areas, tourism areas and industrial areas, and the highest abundance of MPs was observed in the tourism and residential areas, suggesting the impacts of human activities. MPs in these parks were mainly in four kinds of shapes, namely fiber, pellet, fragment and film, and dominated by fibers and fragments. Most of the extracted MPs were small in size, and 63-92% of them were smaller than 0.5 mm. Polypropylene and polyethylene terephthalate were the main polymer types in surface water and sediments, respectively. This study showed that the park water and sediment can be used as an important "sink" in MPs, which is of great significance for monitoring and alleviating the pollution of urban MPs. This study provided important reference for better understanding MPs levels in inland freshwaters.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Plásticos , Agua , Contaminantes Químicos del Agua/análisis
19.
Water Res ; 226: 119294, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323217

RESUMEN

Before being discharged into natural environment, almost all of microplastics (MPs) interact with wastewater constituents in wastewater treatment plants (WWTPs). This study investigated the photoaging of disposable box-derived polystyrene (PS) mediated by real wastewater by simulating the case flowing from WWTPs to natural water. Results showed that wastewater influent pretreatment significantly enhanced the photoaging of PSMPs through the sorption of wastewater constituents, e.g., 2.02 times of increase in photooxidation after 30 d of ultraviolet irradiation. Fulvic acid was identified as the leading contributor for the enhancing effect of wastewater relative to other wastewater constituents such as Cl, CO32-, NO3- and clay particles. In-depth mechanism analysis showed that the observed enhancement was critically controlled by the photosensitization effect of wastewater itself and the enhanced utilization of PSMPs for ultraviolet energy. Specifically, various sorbed wastewater constituents can not only generate higher concentrations of •OH and O2⋅- than clean MPs without constituents, but also reinforce the utilization of PSMPs for light energy due to the increased dispersion in solution by increasing hydrophilicity and surface charges. Also, the light-shielding effect was induced by wastewater, but was less important. This study bridges wastewater source and MP aging and fate and suggests the shortened lifetime of (micro)plastic samples via WWTP input to deepen our understanding of MP pollution in the environment.


Asunto(s)
Envejecimiento de la Piel , Contaminantes Químicos del Agua , Microplásticos , Aguas Residuales/análisis , Plásticos , Poliestirenos , Agua/análisis , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
20.
Water Res ; 219: 118544, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537370

RESUMEN

With the massive use and discarding of plastic products, plastic particles, including nanoplastics (NPs), which are continuously released under the action of environmental factors, are posing greater risk to the ecosystem and human health. NPs exposed to the environment experience aging, which can significantly change their physical and chemical properties and affect their environmental behavior. Here, we examined the adsorption behavior of polystyrene nanoplastic (PSNP) aging by ultraviolet (UV) exposure on different minerals (goethite, magnetite, kaolinite and montmorillonite). Aging not only changes the surface morphology of PSNP, but also increases the surface negative charge and produces a large number of oxygen-containing functional groups (OFGs). Incubation of aged PSNP with minerals indicated that iron oxides (goethite and magnetite) showed stronger interactions with aged PSNP than pristine PSNP, and there was an interaction between clay minerals and aged PSNP. The adsorption experiments and scanning electron microscopy (SEM) suggested that the higher adsorption capacity of a mineral surface to aged PSNP may be related to electrostatic attraction and ligand exchange. The Fourier transform infrared (FTIR) spectra after adsorption showed that the adsorption affinity between the functional groups was different, and two-dimensional correlation spectroscopy (2D-COS) analysis further indicated that the mineral preferentially adsorbed the aged PSNP in accordance with the order of OFGs. The findings provide a theoretical basis for scientific evaluation of ecological risks of NPs in the environment.


Asunto(s)
Microplásticos , Poliestirenos , Adsorción , Anciano , Envejecimiento , Ecosistema , Óxido Ferrosoférrico , Humanos , Minerales/química , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA