Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Sci Technol ; 55(13): 8760-8770, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34132095

RESUMEN

Microplastics (MPs) are becoming ubiquitous in environments and viewed as carriers of antibiotic resistance genes (ARGs). Rivers connecting differently urbanized areas contribute a significant input of MPs and ARGs to the environment. However, a systematic study assessing the role of urbanization in shaping antibiotic resistome and mobilome in riverine MPs is lacking. Here, we conducted a large-scale study by placing five types of MPs (polyethylene, polypropylene, polystyrene, polyethylene-fiber, and polyethylene-fiber-polyethylene) into Beilun River with an urbanization gradient. A total of 314 ARGs and 57 mobile genetic elements (MGEs) were detected in MPs by high-throughput quantitative polymerase chain reaction (PCR). The ARGs in MPs showed a clear spatial distribution with the abundance increased by 2 orders of magnitude from rural to urban regions. A holistic analysis of 13 socioeconomic and environmental factors identified that urbanization predominantly contributed to both the abundance and potential MGE-mediated dissemination of ARGs in riverine MPs. Notably, MPs types were found to significantly affect the resistome and dissemination risk of ARGs, with polypropylene being the preferred substrates to acquire and spread ARGs. This work highlights the necessity of controlling MPs and ARGs pollution in urban areas and provides an important guide for the future usage and disposal of plastics.


Asunto(s)
Microplásticos , Ríos , Antibacterianos , Genes Bacterianos , Plásticos , Urbanización
2.
Water Res ; 245: 120574, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690412

RESUMEN

Microplastics (MPs) ubiquitous in environments promote the dissemination of antibiotic resistance genes (ARGs), threatening ecosystem safety and human health. However, quantitative assessments of the health risks of ARGs (HRA) in plastisphere and an in-depth exploration of their driving mechanisms are still lacking. Here, the microbiomes, ARGs, and community assembly processes of five types of MPs in an urbanizing watershed were systematically investigated. By fully considering the abundance, clinical availability, human pathogenicity, human accessibility, and mobility of 660 ARGs in plastisphere, the HRA on MPs were quantified and compared. Polyethylene had the highest HRA among the five MP types, and urbanization further increased its risk index. In addition to abiotic factors, more complex biotic factors have been shown to drive HRA in plastisphere. Specifically, dispersal limitation accounted for the increasing diversity and interaction of bacteria that determined HRA in plastisphere. Further analysis of metabolic functions indicated that a higher HRA was accompanied by decreased normal metabolic functions of plastisphere microbiota due to the higher fitness costs of ARGs. This study advances the quantitative surveillance of HRA in plastisphere and understanding of its driving mechanisms. This will be helpful for the management of both MPs and ARGs treatments for human health.


Asunto(s)
Genes Bacterianos , Microbiota , Humanos , Plásticos , Antibacterianos , Bacterias/genética , Microplásticos , Microbiota/genética
3.
Water Res ; 223: 119018, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36057234

RESUMEN

Microplastics (MPs) are emerging as anthropogenic vectors for the colonization and transportation of microbial communities in aquatic ecosystems. However, the composition of the microbiome and its environmental risk on field MPs at watershed scale has rarely been explored. Here, geographical distributions of microbiome, antibiotic resistance genes (ARGs) and virulence factors (VFs) on field MPs at watershed scale were characterized and their potential environmental risks were evaluated based on the data from metagenomic analyzes. The succession of microbial communities on MPs was observed along the watershed, and some ARGs and VFs were significantly enriched on MPs in urban region in comparison with rural region. Potential environmental risk of MPs conducted by Projection Pursuit Regression model in midstream (peri-urban region) and downstream (urban region) were significantly higher than that in upstream (rural region), and exhibit close relationships with MPs concentration and water velocity. Furthermore, our source tracking results demonstrated that the microbiome, ARGs and VFs in urban region MPs were largely derived from rural region MPs. Our results caution us that special attention should be paid to the risks posed by MPs in urban water bodies, and highlight the threat of MPs from rural upstream areas.


Asunto(s)
Microbiota , Microplásticos , Antibacterianos , Genes Bacterianos , Plásticos , Factores de Virulencia , Agua
4.
Environ Int ; 161: 107146, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35183943

RESUMEN

Microplastics (MPs) have been considered as a new vector for the long-distance transport of pathogens in aquatic ecosystems. However, the composition of viral communities attached on MPs and their environmental risk are largely unknown. Here, we profiled the viral diversity and potential risk in five different MPs collected from the Beilun River based on metagenomic analysis. Nearly 2863 million raw reads were produced and assembled, and annotation resulted in the identification of 1719 different species of viruses in MPs. Viruses in polypropylene (PP) displayed the highest diversity, with about 250 specific viruses detected. Source tracking of viruses in MPs by the fast expectation-maximization microbial source tracking method (FEAST) demonstrated that viruses in upstream and downstream MPs are two major sources of viruses in estuary. Furthermore, the MP-type-dependent potential environmental risk of viruses was significant based on both antibiotic resistance genes (ARGs) and virulence factors (VFs) detected in viral metagenomes, and PP was confirmed with the highest potential environmental risk. This study reveals the high diversity and potential environmental risk of viruses in different MPs, and provides an important guidance for future environmental monitoring and understanding the potential risks associated with both viral transmission and MPs pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Metagenoma , Plásticos , Ríos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Bioresour Technol ; 303: 122849, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32035389

RESUMEN

The goal of this work was to explore the effect of Fenton pretreatment combined with bacteria inoculation on the formation of humic substances (HS) during rice straw composting. In this study, the compound bacterial agents were inoculated after Fenton pretreatment during rice straw composting. The results suggested that the coupling effects of Fenton pretreatment and bacteria inoculation promoted the humification process, which might be the reason of organic fractions degradation and transformation. In addition, the bacterial communities structure and diversity were changed by Fenton pretreatment and inoculation. Key microbial genera linking to the transformation of organic fractions were determined by network analysis. Redundancy analysis and structural equation model analysis indicated that Fenton pretreatment, inoculation, amino acid, soluble sugar and beta-diversity as the key factors affecting organic fractions transformation during composting. Therefore, the combined application Fenton pretreatment with bacteria inoculation provided a new method to promote the HS amount.


Asunto(s)
Compostaje , Oryza , Bacterias , Biomasa , Sustancias Húmicas , Lignina , Suelo
6.
ACS Appl Mater Interfaces ; 11(36): 32689-32696, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31429534

RESUMEN

Biosensing applications require signal reporters to be sufficiently stable and biosafe as well as highly efficient. Aggregation-induced emission (AIE) nanoparticles have proven to be capable of cell-imaging and cancer therapy; however, realizing sensitive detection of biomolecules remains a great challenge because of their instability, biotoxicity, and lack of modifiable functional groups. Herein, we report a self-assembling strategy to fabricate AIE nanoparticles (PTDNPs) through the dispersion of amphiphilic polymers (PTDs) in phosphate-buffered saline. The PTDs were prepared through radical copolymerization of N-(1,2,2-triphenylvinyl)-4-acetylaniline and dimethyl diallyl ammonium chloride. We found that the particle size, morphology, functional groups, and fluorescence property of PTDNPs can be fine-tuned. Further, PTDNPs-0.10 were chosen as signal reporters to detect organophosphorus pesticides (OPs) with the aid of gold nanoparticles. Their sensing performance on OPs is superior to that using C-dot/quantum dot/rhodamine B as the signal reporter. This study not only provides new possibilities to fabricate novel AIE nanoparticles with exceptional properties, but also facilitates the AIE nanoparticle's application for target analyte biosensing.


Asunto(s)
Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Compuestos Organofosforados/análisis , Plaguicidas/análisis , Polímeros/química , Tensoactivos/química , Acetilcolinesterasa/metabolismo , Brassica/química , Oro/química , Nanopartículas del Metal/ultraestructura , Paraoxon/análisis , Polímeros/síntesis química , Espectrometría de Fluorescencia , Agua/química
7.
Bioresour Technol ; 294: 122132, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31526931

RESUMEN

This study aims to explore the effect of Fenton pretreatment on organic fractions, enzymes activities and microbial communities during composting. In this study, rice straw was chosen to be composted after pretreatment. The results indicated that Fenton pretreatment significantly increased the degradation of organic matter and coarse fiber contents, which might be the reason that Fenton pretreatment enhanced lignocellulose-degrading enzymes activities during composting, including CMCase, FPase, xylanase, manganese peroxidase, lignin peroxidase and laccase. Additionally, Fenton pretreatment reshaped bacteria community. The key enzymes and environmental factors, which affected organic fractions degradation were identified by redundancy analysis. Furthermore, structural equation modeling and variation partitioning analysis further revealed possible mechanisms of organic fractions degradation in different treatments during composting. In summary, the combined application Fenton pretreatment and composting improved lignocellulose degradation efficiency, which provided for an effective and environment-friendly way to manage lignocellulose wastes.


Asunto(s)
Compostaje , Oryza , Lignina , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA