Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biomacromolecules ; 15(5): 1845-51, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24670217

RESUMEN

Mesoporous silica nanoparticles (MSNs) are a new class of carrier materials promising for drug/gene delivery and many other important applications. Stealth coatings are necessary to maintain their stability in complex media. Herein, a biomimetic polymer conjugate containing one ultralow fouling poly(carboxybetaine) (pCBMA) chain and one surface-adhesive catechol (DOPA) residue group was efficiently grafted to the outer surface of SBA-15 type MSNs using a convenient and robust method. The cytotoxicity of SBA-15-DOPA-pCBMAs was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results showed no significant decrease in cell viability at the tested concentration range. Macrophage cell uptake studies revealed that the uptake ratios of SBA-15-DOPA-pCBMAs were much lower than that of parent MSNs. Furthermore, inductively coupled plasma mass spectrometry (ICP-MS) analysis results showed that after SBA-15-DOPA-pCBMAs were conjugated with a targeting cyclo-[Arg-Gly-Asp-d-Tyr-Lys] (cRGD) peptide, uptake by bovine aortic endothelial cells (BAECs) was notably increased. Results indicated that cRGD-functionalized MSNs were able to selectively interact with cells expressing αvß3 integrin. Thus, MSNs with DOPA-pCBMAs are promising as stealth multifunctional biocarriers for targeted drug delivery or diagnostics.


Asunto(s)
Betaína/química , Materiales Biocompatibles/química , Portadores de Fármacos/química , Nanopartículas/química , Polímeros/química , Dióxido de Silicio/química , Animales , Betaína/análogos & derivados , Betaína/metabolismo , Materiales Biocompatibles/metabolismo , Bovinos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Células Endoteliales/metabolismo , Macrófagos/metabolismo , Ratones , Estructura Molecular , Células 3T3 NIH , Tamaño de la Partícula , Polímeros/metabolismo , Porosidad , Propiedades de Superficie
2.
Biosensors (Basel) ; 13(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38131761

RESUMEN

Herein, a cost-effective and portable microfluidic paper-based sensor is proposed for the simultaneous and rapid detection of glucose, free amino acids, and vitamin C in fruit. The device was constructed by embedding a poly(carboxybetaine acrylamide) (pCBAA)-modified cellulose paper chip within a hydrophobic acrylic plate. We successfully showcased the capabilities of a filter paper-based microfluidic sensor for the detection of fruit nutrients using three distinct colorimetric analyses. Within a single paper chip, we simultaneously detected glucose, free amino acids, and vitamin C in the vivid hues of cyan blue, purple, and Turnbull's blue, respectively, in three distinctive detection zones. Notably, we employed more stable silver nanoparticles for glucose detection, replacing the traditional peroxidase approach. The detection limits for glucose reached a low level of 0.049 mmol/L. Meanwhile, the detection limits for free amino acids and vitamin C were found to be 0.236 mmol/L and 0.125 mmol/L, respectively. The feasibility of the proposed sensor was validated in 13 different practical fruit samples using spectrophotometry. Cellulose paper utilizes capillary action to process trace fluids in tiny channels, and combined with pCBAA, which has superior hydrophilicity and anti-pollution properties, it greatly improves the sensitivity and practicality of paper-based sensors. Therefore, the paper-based colorimetric device is expected to provide technical support for the nutritional value assessment of fruits in the field of rapid detection.


Asunto(s)
Ácido Ascórbico , Nanopartículas del Metal , Aminoácidos , Frutas/química , Glucosa/análisis , Nanopartículas del Metal/química , Papel , Plata/química , Celulosa
3.
Biosensors (Basel) ; 12(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36290940

RESUMEN

Listeria monocytogenes is a hazardous foodborne pathogen that is able to cause acute meningitis, encephalitis, and sepsis to humans. The efficient detection of 3-hydroxy-2-butanone, which has been verified as a biomarker for the exhalation of Listeria monocytogenes, can feasibly evaluate whether the bacteria are contained in food. Herein, we developed an outstanding 3-hydroxy-2-butanone gas sensor based on the microelectromechanical systems using Au/ZnO NS as a sensing material. In this work, ZnO nanosheets were synthesized by a hydrothermal reaction, and Au nanoparticles (~5.5 nm) were prepared via an oleylamine reduction method. Then, an ultrasonic treatment was carried out to modified Au nanoparticles onto ZnO nanosheets. The XRD, BET, TEM, and XPS were used to characterize their morphology, microstructure, catalytic structure, specific surface area, and chemical composition. The response of the 1.0% Au/ZnO NS sensors vs. 25 ppm 3-hydroxy-2-butanone was up to 174.04 at 230 °C. Moreover, these sensors presented fast response/recovery time (6 s/7 s), great selectivity, and an outstanding limit of detection (lower than 0.5 ppm). This work is full of promise for developing a nondestructive, rapid and practical sensor, which would improve Listeria monocytogenes evaluation in foods.


Asunto(s)
Nanopartículas del Metal , Materiales Inteligentes , Óxido de Zinc , Humanos , Óxido de Zinc/química , Oro , Acetoína , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA