Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(5): e108899, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132656

RESUMEN

The mechanochemical coupling of ATPase hydrolysis and conformational dynamics in kinesin motors facilitates intramolecular interaction cycles between the kinesin motor and neck domains, which are essential for microtubule-based motility. Here, we characterized a charge-inverting KIF1A-E239K mutant that we identified in a family with axonal-type Charcot-Marie-Tooth disease and also in 24 cases in human neuropathies including spastic paraplegia and hereditary sensory and autonomic neuropathy. We show that Glu239 in the ß7 strand is a key residue of the motor domain that regulates the motor-neck interaction. Expression of the KIF1A-E239K mutation has decreased ability to complement Kif1a+/- neurons, and significantly decreases ATPase activity and microtubule gliding velocity. X-ray crystallography shows that this mutation causes an excess positive charge on ß7, which may electrostatically interact with a negative charge on the neck. Quantitative mass spectrometric analysis supports that the mutation hyper-stabilizes the motor-neck interaction at the late ATP hydrolysis stage. Thus, the negative charge of Glu239 dynamically regulates the kinesin motor-neck interaction, promoting release of the neck from the motor domain upon ATP hydrolysis.


Asunto(s)
Adenosina Trifosfatasas/genética , Cinesinas/genética , Mutación/genética , Neuronas/fisiología , Anciano , Secuencia de Aminoácidos , Axones/fisiología , Enfermedad de Charcot-Marie-Tooth , Humanos , Masculino , Microtúbulos/genética , Persona de Mediana Edad , Alineación de Secuencia
2.
Brain ; 147(9): 3144-3156, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38481354

RESUMEN

Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009 to 2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome sequencing and WGS and, latterly, WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. In summary, 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100 000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment, leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre and has benefitted from the use of WGS, particularly access to the raw data. However, almost one-quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Secuenciación Completa del Genoma , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano , Niño , Pruebas Genéticas/métodos , Preescolar , Anciano de 80 o más Años
3.
Brain ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008620

RESUMEN

DNA-based therapeutics have emerged as a revolutionary approach for addressing the treatment gap in rare inherited conditions by targeting the fundamental genetic causes of disease. Charcot-Marie-Tooth (CMT) disease, a group of inherited neuropathies, represents one of the most prevalent Mendelian disease groups in neurology and is characterized by diverse genetic etiology. Axonal forms of CMT, known as CMT2, are caused by dominant mutations in over 30 different genes which lead to degeneration of lower motor neuron axons. Recent advances in antisense oligonucleotide (ASO) therapeutics have shown promise in targeting neurodegenerative disorders. Here we elucidate pathomechanistic changes contributing to variant specific molecular phenotypes in CMT2E, caused by a single nucleotide substitution (p.N98S) in the neurofilament light chain gene (NEFL). We used a patient-derived pluripotent stem cell (iPSC)-induced motor neuron model, which recapitulates several cellular and biomarker phenotypes associated with CMT2E. Using an ASO treatment strategy targeting a heterozygous gain-of-function variant, we aimed to resolve molecular phenotypic changes observed in the CMT2E p.N98S subtype. To determine ASO therapeutic potential, we employed our treatment strategy in iPSC-derived motor neurons and used established as well as novel biomarkers of peripheral nervous system axonal degeneration. Our findings have demonstrated a significant decrease in clinically relevant biomarkers of axonal degeneration, presenting the first clinically viable genetic therapeutic for CMT2E. Similar strategies could be used to develop precision medicine approaches for otherwise untreatable gain of function inherited disorders.

4.
Brain ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938188

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

5.
Eur J Neurol ; 31(1): e16063, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37772343

RESUMEN

BACKGROUND AND PURPOSE: Mutations in the alpha-B-crystallin (CRYAB) gene have initially been associated with myofibrillar myopathy, dilated cardiomyopathy and cataracts. For the first time, peripheral neuropathy is reported here as a novel phenotype associated with CRYAB. METHODS: Whole-exome sequencing was performed in two unrelated families with genetically unsolved axonal Charcot-Marie-Tooth disease (CMT2), assessing clinical, neurophysiological and radiological features. RESULTS: The pathogenic CRYAB variant c.358A>G;p.Arg120Gly was segregated in all affected patients from two unrelated families. The disease presented as late onset CMT2 (onset over 40 years) with distal sensory and motor impairment and congenital cataracts. Muscle involvement was probably associated in cases showing mild axial and diaphragmatic weakness. In all cases, nerve conduction studies demonstrated the presence of an axonal sensorimotor neuropathy along with chronic neurogenic changes on needle examination. DISCUSSION: In cases with late onset autosomal dominant CMT2 and congenital cataracts, it is recommended that CRYAB is considered for genetic testing. The identification of CRYAB mutations causing CMT2 further supports a continuous spectrum of expressivity, from myopathic to neuropathic and mixed forms, of a growing number of genes involved in protein degradation and chaperone-assisted autophagy.


Asunto(s)
Catarata , Enfermedad de Charcot-Marie-Tooth , Cristalinas , Humanos , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Mutación/genética , Pruebas Genéticas , Fenotipo , Cristalinas/genética , Catarata/genética , Linaje
6.
J Peripher Nerv Syst ; 29(2): 202-212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581130

RESUMEN

BACKGROUND: Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS: We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS: We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION: Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Humanos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Adolescente , Adulto Joven , Índice de Severidad de la Enfermedad , Niño , Proteínas de la Mielina/genética , Selección de Paciente , Fenotipo , Anciano , Genes Modificadores , Preescolar
7.
Brain ; 146(9): 3826-3835, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947133

RESUMEN

Recessive SH3TC2 variants cause Charcot-Marie-Tooth disease type 4C (CMT4C). CMT4C is typically a sensorimotor demyelinating polyneuropathy, marked by early onset spinal deformities, but its clinical characteristics and severity are quite variable. Clear relationships between pathogenic variants and the spectrum of disease manifestations are to date lacking. Gene replacement therapy has been shown to ameliorate the phenotype in a mouse model of CMT4C, emphasizing the need for natural history studies to inform clinical trial readiness. Data, including both genetic information and clinical characteristics, were compiled from the longitudinal, prospective dataset of the Inherited Neuropathy Consortium, a member of the Rare Diseases Clinical Research Network (INC-RDCRN). The Charcot Marie Tooth Neuropathy Score (CMTNS), Examination Score (CMTES) and the Rasch-weighted CMTES (CMTES-R) were used to describe symptoms, neurological examinations and neurophysiological characteristics. Standardized response means were calculated at yearly intervals and a mixed model for repeated measures was used to estimate the change in CMTES and CMTES-R over time. Fifty-six individuals (59% female), median age 27 years (range 2-67 years) with homozygous or compound heterozygous variants in SH3TC2 were identified, including 34 unique variants, 14 of which have not previously been published. Twenty-eight participants had longitudinal data available. While there was no significant difference in the CMTES in those with protein truncating versus non-protein truncating variants, there were significant differences in the mean ulnar nerve compound muscle action potential amplitude, the mean radial sensory nerve action potential amplitude, and in the prevalence of scoliosis, suggesting the possibility of a milder phenotype in individuals with one or two non-protein-truncating variants. Overall, the mean value of the CMTES was 13, reflecting moderate clinical severity. There was a high rate of scoliosis (81%), scoliosis surgery (36%), and walking difficulty (94%) among study participants. The CMTES and CMTES-R appeared moderately responsive to change over extended follow-up, demonstrating a standardized response mean of 0.81 standard deviation units or 0.71 standard deviation units, respectively, over 3 years. Our analysis represents the largest cross-sectional and only longitudinal study to date, of the clinical phenotype of both adults and children with CMT4C. With the promise of upcoming genetic treatments, these data will further define the natural history of the disease and inform study design in preparation for clinical trials.


Asunto(s)
Escoliosis , Animales , Ratones , Femenino , Masculino , Escoliosis/genética , Estudios Longitudinales , Mutación/genética , Estudios Transversales , Estudios Prospectivos , Estudios de Asociación Genética
8.
Brain ; 146(10): 4336-4349, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37284795

RESUMEN

Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Femenino , Humanos , Masculino , Enfermedad de Charcot-Marie-Tooth/patología , Conexinas/genética , Mutación/genética , Mutación Missense , Fenotipo , Proteína beta1 de Unión Comunicante
9.
Am J Hum Genet ; 107(4): 763-777, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937143

RESUMEN

Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Factores de Intercambio de Guanina Nucleótido/genética , Debilidad Muscular/genética , Atrofia Muscular Espinal/genética , Anomalías Musculoesqueléticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Axones/patología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/patología , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Heterocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Anomalías Musculoesqueléticas/diagnóstico , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Mutación , Linaje , Cultivo Primario de Células , Médula Espinal/anomalías , Médula Espinal/metabolismo
10.
Eur J Neurol ; 30(2): 511-526, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260368

RESUMEN

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS: We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS: We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS: Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Miosinas , Animales , Humanos , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mutación/genética , Linaje , Fenotipo , Proteínas , Nervio Ciático/patología , Miosinas/genética
11.
Brain ; 144(4): 1197-1213, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33889941

RESUMEN

The CADM family of proteins consists of four neuronal specific adhesion molecules (CADM1, CADM2, CADM3 and CADM4) that mediate the direct contact and interaction between axons and glia. In the peripheral nerve, axon-Schwann cell interaction is essential for the structural organization of myelinated fibres and is primarily mediated by the binding of CADM3, expressed in axons, to CADM4, expressed by myelinating Schwann cells. We have identified-by whole exome sequencing-three unrelated families, including one de novo patient, with axonal Charcot-Marie-Tooth disease (CMT2) sharing the same private variant in CADM3, Tyr172Cys. This variant is absent in 230 000 control chromosomes from gnomAD and predicted to be pathogenic. Most CADM3 patients share a similar phenotype consisting of autosomal dominant CMT2 with marked upper limb involvement. High resolution mass spectrometry analysis detected a newly created disulphide bond in the mutant CADM3 potentially modifying the native protein conformation. Our data support a retention of the mutant protein in the endoplasmic reticulum and reduced cell surface expression in vitro. Stochastic optical reconstruction microscopy imaging revealed decreased co-localization of the mutant with CADM4 at intercellular contact sites. Mice carrying the corresponding human mutation (Cadm3Y170C) showed reduced expression of the mutant protein in axons. Cadm3Y170C mice showed normal nerve conduction and myelin morphology, but exhibited abnormal axonal organization, including abnormal distribution of Kv1.2 channels and Caspr along myelinated axons. Our findings indicate the involvement of abnormal axon-glia interaction as a disease-causing mechanism in CMT patients with CADM3 mutations.


Asunto(s)
Moléculas de Adhesión Celular/genética , Enfermedad de Charcot-Marie-Tooth/genética , Inmunoglobulinas/genética , Adulto , Axones/patología , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neuroglía/patología , Linaje , Fenotipo
12.
Am J Hum Genet ; 102(3): 505-514, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499166

RESUMEN

Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Niño , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , ATPasa Intercambiadora de Sodio-Potasio/química , Adulto Joven
13.
Eur J Neurol ; 28(11): 3774-3783, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255403

RESUMEN

BACKGROUND AND PURPOSE: The purpose was to provide an overview of genotype and phenotype distribution in a cohort of patients with Charcot-Marie-Tooth disease (CMT) and related disorders from central south China. METHODS: In all, 435 patients were enrolled and detailed clinical data were collected. Multiplex ligation-dependent probe amplification for PMP22 duplication/deletion and CMT multi-gene panel sequencing were performed. Whole exome sequencing was further applied in the remaining patients who failed to achieve molecular diagnosis. RESULTS: Among the 435 patients, 216 had CMT1, 14 had hereditary neuropathy with pressure palsies (HNPP), 178 had CMT2, 24 had distal hereditary motor neuropathy (dHMN) and three had hereditary sensory and autonomic neuropathy (HSAN). The overall molecular diagnosis rate was 70%: 75.7% in CMT1, 100% in HNPP, 64.6% in CMT2, 41.7% in dHMN and 33.3% in HSAN. The most common four genotypes accounted for 68.9% of molecular diagnosed patients. Relatively frequent causes were missense changes in PMP22 (4.6%) and SH3TC2 (2.3%) in CMT1; and GDAP1 (5.1%), IGHMBP2 (4.5%) and MORC2 (3.9%) in CMT2. Twenty of 160 detected pathogenic variants and the associated phenotypes have not been previously reported. Broad phenotype spectra were observed in six genes, amongst which the pathogenic variants in BAG3 and SPTLC1 were detected in two sporadic patients presenting with the CMT2 phenotype. CONCLUSIONS: Our results provided a unique genotypic and phenotypic landscape of patients with CMT and related disorders from central south China, including a relatively high proportion of CMT2 and lower occurrence of PMP22 duplication. The broad phenotype spectra in certain genes have advanced our understanding of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Enfermedad de Charcot-Marie-Tooth/epidemiología , Enfermedad de Charcot-Marie-Tooth/genética , China/epidemiología , Proteínas de Unión al ADN , Genotipo , Humanos , Fenotipo , Factores de Transcripción
14.
Eur J Neurol ; 28(4): 1344-1355, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33220101

RESUMEN

BACKGROUND AND PURPOSE: Pathogenic variants in PLEKHG5 have been reported to date to be causative in three unrelated families with autosomal recessive intermediate Charcot-Marie-Tooth disease (CMT) and in one consanguineous family with spinal muscular atrophy (SMA). PLEKHG5 is known to be expressed in the human peripheral nervous system, and previous studies have shown its function in axon terminal autophagy of synaptic vesicles, lending support to its underlying pathogenetic mechanism. Despite this, there is limited knowledge of the clinical and genetic spectrum of disease. METHODS: We leverage the diagnostic utility of exome and genome sequencing and describe novel biallelic variants in PLEKHG5 in 13 individuals from nine unrelated families originating from four different countries. We compare our phenotypic and genotypic findings with a comprehensive review of cases previously described in the literature. RESULTS: We found that patients presented with variable disease severity at different ages of onset (8-25 years). In our cases, weakness usually started proximally, progressing distally, and can be associated with intermediate slow conduction velocities and minor clinical sensory involvement. We report three novel nonsense and four novel missense pathogenic variants associated with these PLEKHG5-associated neuropathies, which are phenotypically spinal muscular atrophy (SMA) or intermediate Charcot-Marie-Tooth disease. CONCLUSIONS: PLEKHG5-associated neuropathies should be considered as an important differential in non-5q SMAs even in the presence of mild sensory impairment and a candidate causative gene for a wide range of hereditary neuropathies. We present this series of cases to further the understanding of the phenotypic and molecular spectrum of PLEKHG5-associated diseases.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/genética , Consanguinidad , Genes Recesivos , Genotipo , Factores de Intercambio de Guanina Nucleótido , Humanos , Mutación , Fenotipo
15.
Brain ; 143(12): 3589-3602, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33415332

RESUMEN

Mitofusin-2 (MFN2) is one of two ubiquitously expressed homologous proteins in eukaryote cells, playing a critical role in mitochondrial fusion. Mutations in MFN2 (most commonly autosomal dominant) cause Charcot-Marie-Tooth disease type 2A (CMT2A), the commonest axonal form of CMT, with significant allelic heterogeneity. Previous, moderately-sized, cross sectional genotype-phenotype studies of CMT2A have described the phenotypic spectrum of the disease, but longitudinal natural history studies are lacking. In this large multicentre prospective cohort study of 196 patients with dominant and autosomal recessive CMT2A, we present an in-depth genotype-phenotype study of the baseline characteristics of patients with CMT2A and longitudinal data (1-2 years) to describe the natural history. A childhood onset of autosomal dominant CMT2A is the most predictive marker of significant disease severity and is independent of the disease duration. When compared to adult onset autosomal dominant CMT2A, it is associated with significantly higher rates of use of ankle-foot orthoses, full-time use of wheelchair, dexterity difficulties and also has significantly higher CMT Examination Score (CMTESv2) and CMT Neuropathy Score (CMTNSv2) at initial assessment. Analysis of longitudinal data using the CMTESv2 and its Rasch-weighted counterpart, CMTESv2-R, show that over 1 year, the CMTESv2 increases significantly in autosomal dominant CMT2A (mean change 0.84 ± 2.42; two-tailed paired t-test P = 0.039). Furthermore, over 2 years both the CMTESv2 (mean change 0.97 ± 1.77; two-tailed paired t-test P = 0.003) and the CMTESv2-R (mean change 1.21 ± 2.52; two-tailed paired t-test P = 0.009) increase significantly with respective standardized response means of 0.55 and 0.48. In the paediatric CMT2A population (autosomal dominant and autosomal recessive CMT2A grouped together), the CMT Pediatric Scale increases significantly both over 1 year (mean change 2.24 ± 3.09; two-tailed paired t-test P = 0.009) and over 2 years (mean change 4.00 ± 3.79; two-tailed paired t-test P = 0.031) with respective standardized response means of 0.72 and 1.06. This cross-sectional and longitudinal study of the largest CMT2A cohort reported to date provides guidance for variant interpretation, informs prognosis and also provides natural history data that will guide clinical trial design.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/patología , Adolescente , Adulto , Edad de Inicio , Enfermedad de Charcot-Marie-Tooth/genética , Niño , Preescolar , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , GTP Fosfohidrolasas/genética , Genes Dominantes , Genes Recesivos , Estudios de Asociación Genética , Marcadores Genéticos , Humanos , Lactante , Estudios Longitudinales , Masculino , Proteínas Mitocondriales/genética , Examen Neurológico , Aparatos Ortopédicos/estadística & datos numéricos , Pronóstico , Estudios Prospectivos , Silla de Ruedas , Adulto Joven
16.
Genet Med ; 22(12): 2114-2119, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32741968

RESUMEN

PURPOSE: Inherited axonopathies (IA) are rare, clinically and genetically heterogeneous diseases that lead to length-dependent degeneration of the long axons in central (hereditary spastic paraplegia [HSP]) and peripheral (Charcot-Marie-Tooth type 2 [CMT2]) nervous systems. Mendelian high-penetrance alleles in over 100 different genes have been shown to cause IA; however, about 50% of IA cases do not receive a genetic diagnosis. A more comprehensive spectrum of causative genes and alleles is warranted, including causative and risk alleles, as well as oligogenic multilocus inheritance. METHODS: Through international collaboration, IA exome studies are beginning to be sufficiently powered to perform a pilot rare variant burden analysis. After extensive quality control, our cohort contained 343 CMT cases, 515 HSP cases, and 935 non-neurological controls. We assessed the cumulative mutational burden across disease genes, explored the evidence for multilocus inheritance, and performed an exome-wide rare variant burden analysis. RESULTS: We replicated the previously described mutational burden in a much larger cohort of CMT cases, and observed the same effect in HSP cases. We identified a preliminary risk allele for CMT in the EXOC4 gene (p value= 6.9 × 10-6, odds ratio [OR] = 2.1) and explored the possibility of multilocus inheritance in IA. CONCLUSION: Our results support the continuing emergence of complex inheritance mechanisms in historically Mendelian disorders.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Paraplejía Espástica Hereditaria , Alelos , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Mutación , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Secuenciación del Exoma
17.
Clin Genet ; 97(3): 521-526, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31705535

RESUMEN

Dominant mutations in ATP1A1, encoding the alpha-1 isoform of the Na+ /K+ -ATPase, have been recently reported to cause an axonal to intermediate type of Charcot-Marie-Tooth disease (ie, CMT2DD) and a syndrome with hypomagnesemia, intractable seizures and severe intellectual disability. Here, we describe the first case of hereditary spastic paraplegia (HSP) caused by a novel de novo (p.L337P) variant in ATP1A1. We provide evidence for the causative role of this variant with functional and homology modeling studies. This finding expands the phenotypic spectrum of the ATP1A1-related disorders, adds a piece to the larger genetic puzzle of HSP, and increases knowledge on the molecular mechanisms underlying inherited axonopathies (ie, CMT and HSP).


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Polineuropatías/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Paraplejía Espástica Hereditaria/genética , Enfermedad de Charcot-Marie-Tooth/patología , Preescolar , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Humanos , Masculino , Linaje , Fenotipo , Polineuropatías/complicaciones , Polineuropatías/patología , Paraplejía Espástica Hereditaria/complicaciones , Paraplejía Espástica Hereditaria/patología
18.
Ann Neurol ; 85(3): 316-330, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30706531

RESUMEN

OBJECTIVE: Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. METHODS: We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. RESULTS: We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 × 10-7 ). Coimmunoprecipitation and mass spectroscopy studies identified ß-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. INTERPRETATION: SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Pie/fisiopatología , Proteínas Activadoras de GTPasa/genética , Genes Modificadores/genética , Debilidad Muscular/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Preescolar , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Debilidad Muscular/fisiopatología , Proteínas de la Mielina/genética , Neurilemoma/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Ratas , Índice de Severidad de la Enfermedad , Adulto Joven
19.
Am J Hum Genet ; 98(4): 597-614, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27040688

RESUMEN

Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3' UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants.


Asunto(s)
Regiones no Traducidas 3'/genética , Axones/patología , Filamentos Intermedios/genética , Neuronas Motoras/patología , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , Mutación del Sistema de Lectura , Humanos , Filamentos Intermedios/metabolismo , Ratones , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Mutación , Linaje , Pez Cebra/genética
20.
Am J Hum Genet ; 99(3): 607-623, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27588448

RESUMEN

Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade ß-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.


Asunto(s)
Axones/patología , Genes Dominantes/genética , Mutación/genética , Neprilisina/genética , Polineuropatías/genética , Polineuropatías/patología , Tejido Adiposo/metabolismo , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Alelos , Péptidos beta-Amiloides/metabolismo , Animales , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Análisis Mutacional de ADN , Bases de Datos Genéticas , Demencia/complicaciones , Demencia/genética , Exoma/genética , Heterocigoto , Humanos , Ratones , Persona de Mediana Edad , Mutación Missense/genética , Neprilisina/análisis , Neprilisina/sangre , Neprilisina/deficiencia , Penetrancia , Polineuropatías/complicaciones , Piel/metabolismo , Nervio Sural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA