Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Yeast ; 40(2): 84-101, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36582015

RESUMEN

This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.


Asunto(s)
Saccharum , Madera , Celulosa , Bosque Lluvioso , Brasil , Filogenia , Levaduras
2.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500273

RESUMEN

Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.


Asunto(s)
Lignina , Tensoactivos , Lignina/química , Fermentación , Biomasa , Hidrólisis , Biocombustibles
3.
Prep Biochem Biotechnol ; 51(2): 153-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32757876

RESUMEN

Aureobasidium pullulans LB83 was evaluated for cellulase production under submerged fermentation conditions. Different process variables such as carbon sources (corn cob, sugarcane bagasse, and sugarcane straw), synthetic (urea, ammonium sulfate, and peptone), and non-synthetic (soybean meal, rice, and corn meal) nitrogen sources and inoculum size were evaluated by one parameter at-a-time strategy. Aureobasidium pullulans LB83 showed maximum cellulase activity (FPase, 2.27 U/mL; CMCase, 7.42 U/mL) on sugarcane bagasse. Among the nitrogen sources, soybean meal as a non-synthetic nitrogen sources showed a maximum cellulase activity (FPase 2.45 U/mL; CMCase, 6.86 U/mL) after 60 hr. The inoculum size of 1.6 × 106 CFU/mL had the maximum FPase and CMCase activities of 3.14 and 8.74 U/mL, respectively. For the enzymatic hydrolysis, both the commercial cellulase (10 FPU/g of Cellic CTec 2 (#A) and 10 FPU/g of crude enzyme extract (CEE) (#B), and varying ratio of CTec 2 and CEE in combination #C (5 FPU/g of CTec 2 + 5 FPU/g CEE), combination #D (2.5 FPU/g of CTec 2 + 7.5 FPU/g CEE), and combination #E (7.5 FPU/g of CTec 2 + 2.5 FPU/g CEE) were assessed for enzymatic hydrolysis of delignified sugarcane bagasse. Enzyme combination #C showed maximum hydrolysis yield of 92.40%. The study shows the hydrolytic potential of cellulolytic enzymes from A. pullulans LB83 for lignocellulosic sugars production from delignified sugarcane bagasse.


Asunto(s)
Aureobasidium/enzimología , Biotecnología/métodos , Celulosa/química , Nitrógeno/química , Carbono/química , Celulasa/química , Celulasas , Fermentación , Glucanos , Concentración de Iones de Hidrógeno , Hidrólisis , Lignina/química , Saccharum , Glycine max/metabolismo , Temperatura
4.
Crit Rev Biotechnol ; 35(3): 281-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24156399

RESUMEN

Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.


Asunto(s)
Biocombustibles , Biomasa , Biotecnología/métodos , Lignina , Hidrólisis , Lignina/química , Lignina/metabolismo
6.
Curr Pharm Biotechnol ; 16(1): 35-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25483720

RESUMEN

Xylitol is an important polyalcohol suitable for use in odontological, medical and pharmaceutical products and as an additive in food. The first studies on the efficacy of xylitol in the control and treatment of infections started in the late 1970s and it is still applied for this purpose, with safety and very little contribution to resistance. Xylitol seems to act against microorganisms exerting an anti-adherence effect. Some research studies have demonstrated its action against Gram-positive and Gram-negative bacteria and yeasts. However, a clear explanation of how xylitol is effective has not been completely established yet. Some evidence shows that xylitol acts on gene expression, down-regulating the ones which are involved in the microorganisms' virulence, such as capsule formation. Another possible clarification is that xylitol blocks lectin-like receptors. The most important aspect is that, over time, xylitol bypasses microbial resistance and succeeds in controlling infection, either alone or combined with another compound. In this review, the effect of xylitol in inhibiting the growth of a different microorganism is described, focusing on studies in which such an anti-adherent property was highlighted. This is the first mini-review to describe xylitol as an anti-adherent compound and take into consideration how it exerts such action.


Asunto(s)
Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Candida/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Xilitol/farmacología , Animales , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Candida/fisiología , Adhesión Celular/fisiología , Farmacorresistencia Bacteriana , Farmacorresistencia Fúngica , Humanos
7.
Appl Biochem Biotechnol ; 157(3): 527-37, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18633733

RESUMEN

Viable cells of Candida guilliermondii were immobilized by inclusion into polyvinyl alcohol (PVA) hydrogel using the freezing-thawing method. Entrapment experiments were planned according to a 2(3) full factorial design, using the PVA concentration (80, 100, and 120 g L(-1)), the freezing temperature (-10, -15, and -20 degrees C), and the number of freezing-thawing cycles (one, three, and five) as the independent variables, integrated with three additional tests to estimate the errors. The effectiveness of the immobilization procedure was checked in Erlenmeyer flasks as the pellet capability to catalyze the xylose-to-xylitol bioconversion of a medium based on sugarcane bagasse hemicellulosic hydrolysate. To this purpose, the yield of xylitol on consumed xylose, xylitol volumetric productivity, and cell retention yield were selected as the response variables. Cell pellets were then used to perform the same bioconversion in a stirred tank reactor operated at 400 rpm, 30 degrees C, and 1.04 vvm air flowrate. At the end of fermentation, a maximum xylitol concentration of 28.7 g L(-1), a xylitol yield on consumed xylose of 0.49 g g(-1) and a xylitol volumetric productivity of 0.24 g L(-1) h(-1) were obtained.


Asunto(s)
Biotecnología/métodos , Candida/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polisacáridos/metabolismo , Alcohol Polivinílico/química , Saccharum/metabolismo , Xilitol/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA