Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Anat ; 227(4): 487-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26228092

RESUMEN

During tooth eruption, structural and functional changes must occur in the lamina propria to establish the eruptive pathway. In this study, we evaluate the structural changes that occur during lamina propria degradation and focus these efforts on apoptosis and microvascular density. Fragments of maxilla containing the first molars from 9-, 11-, 13- and 16-day-old rats were fixed, decalcified and embedded in paraffin. The immunohistochemical detection of vascular endothelial growth factor (VEGF), caspase-3 and MAC387 (macrophage marker), and the TUNEL method were applied to the histological molar sections. The numerical density of TUNEL-positive cells and VEGF-positive blood vessel profiles were also obtained. Data were statistically evaluated using a one-way anova with the post-hoc Kruskal-Wallis or Tukey test and a significance level of P ≤ 0.05. Fragments of maxilla were embedded in Araldite for analysis under transmission electron microscopy (TEM). TUNEL-positive structures, fibroblasts with strongly basophilic nuclei and macrophages were observed in the lamina propria at all ages. Using TEM, we identified processes of fibroblasts or macrophages surrounding partially apoptotic cells. We found a high number of apoptotic cells in 11-, 13- and 16-day-old rats. We observed VEGF-positive blood vessel profiles at all ages, but a significant decrease in the numerical density was found in 13- and 16-day-old rats compared with 9-day-old rats. Therefore, the establishment of the eruptive pathway during the mucosal penetration stage depends on cell death by apoptosis, the phagocytic activity of fibroblasts and macrophages, and a decrease in the microvasculature due to vascular cell death. These data point to the importance of vascular rearrangement and vascular neoformation during tooth eruption and the development of oral mucosa.


Asunto(s)
Apoptosis/fisiología , Capilares/ultraestructura , Microcirculación/fisiología , Diente Molar/crecimiento & desarrollo , Membrana Mucosa/irrigación sanguínea , Erupción Dental/fisiología , Animales , Capilares/crecimiento & desarrollo , Etiquetado Corte-Fin in Situ , Masculino , Microscopía Electrónica de Transmisión , Membrana Mucosa/ultraestructura , Ratas , Ratas Sprague-Dawley
2.
J Histochem Cytochem ; 71(12): 689-708, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953508

RESUMEN

This study investigated whether osteocalcin (OCN) is present in osteoblast precursors and its relationship with initial phases of alveolar process formation. Samples of maxillae of 16-, 18-, and 20-day-old rat embryos (E16, E18, and E20, respectively), and 05-, 10-, and 15-day-old postnatal rats (P05, P10, and P15, respectively) were fixed and embedded in paraffin or araldite. Immunohistochemistry for osterix (Osx), alkaline phosphatase (ALP), and OCN detection was performed and the number of immunolabelled cells was computed. Non-decalcified sections were subjected to the von Kossa method combined with immunohistochemistry for Osx or OCN detection. For OCN immunolocalization, samples were fixed in 0.5% glutaraldehyde/2% formaldehyde and embedded in LR White resin. The highest number of ALP- and OCN-immunolabelled cells was observed in dental follicle of E16 specimens, mainly in basal portions of dental alveolus. In corresponding regions, osteoblasts in differentiation adjacent to von Kossa-positive bone matrix exhibited Osx and OCN immunoreactivity. Ultrastructural analysis revealed OCN immunoreactive particles inside osteoblast in differentiation, and in bone matrix associated with collagen fibrils and within matrix vesicles, at early stages of alveolar process formation. Our results indicate that OCN plays a role in osteoblast differentiation and may regulate calcium/phosphate precipitation during early mineralization of the alveolar process.


Asunto(s)
Fosfatasa Alcalina , Osteogénesis , Ratas , Animales , Osteocalcina , Diferenciación Celular , Fosfatasa Alcalina/metabolismo , Osteoblastos/metabolismo , Proceso Alveolar/química , Proceso Alveolar/metabolismo
3.
Cells ; 7(11)2018 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-30423799

RESUMEN

The comprehension of dental pathogenesis and disorders derived from eruption failure requires a deep understanding of the molecular mechanisms underlying normal tooth eruption. As intense remodelling is needed during tooth eruption, we hypothesize that matrix metalloproteinase-1 (MMP-1) and acid phosphatase (ACP) play a role in the eruptive pathway degradation. We evaluated MMP-1-immunoexpression and the collagen content in the lamina propria at different eruptive phases. Immunohistochemistry and ultrastructural cytochemistry for detection of ACP were also performed. In the maxillary sections containing first molars of 9-, 11-, 13-, and 16-day-old rats, the birefringent collagen of eruptive pathway was quantified. MMP-1 and ACP-2 immunohistochemical reactions were performed and the number of MMP-1-immunolabelled cells was computed. Data were analyzed by one-way ANOVA and Tukey post-test (p ≤ 0.05). ACP cytochemistry was evaluated in specimens incubated in sodium ß-glycerophosphate. In the eruptive pathway of 13- and 16-day-old rats, the number of MMP-1-immunolabelled cells increased concomitantly to reduction of collagen in the lamina propria. Enhanced ACP-2-immunolabelling was observed in the lamina propria of 13- and 16-day-old rats. Fibroblasts and macrophages showed lysosomes and vacuoles containing fragmented material reactive to ACP. MMP-1 degrades extracellular matrix, including collagen fibers, being responsible for the reduction in the collagen content during tooth eruption. The enhanced ACP activity at the mucosal penetration stage indicates that this enzyme plays a role in the degradation of remnant material, which is engulfed by macrophages and fibroblasts of the eruptive pathway. Therefore, enzymatic failure in the eruptive pathway may disturbs tooth eruption.

4.
J Periodontol ; 88(1): 100-111, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587368

RESUMEN

BACKGROUND: Histamine seems to act, via H2 receptor, on inflammatory processes by stimulating interleukin (IL)-6 and matrix metalloproteinase (MMP) release. As cimetidine is an H2 receptor antagonist, the authors hypothesize that this antiulcer drug reduces IL-6, MMP-1, and MMP-9 immunoexpression in gingiva with induced periodontal disease (PD). To confirm a possible modulatory role of IL-6 on MMPs, the relationship between IL-6/MMP-1 and IL-6/MMP-9 immunoexpression was evaluated. METHODS: Forty-six male rats were distributed into the cimetidine group (CimG: received daily intraperitoneal injections of 100 mg/kg of body weight of cimetidine) or the saline group (SG). PD was induced by cotton ligature around the maxillary left first molars (PDSG and PDCimG). The right molars were used as controls (SG and CimG). After 7, 15, 30, and 50 days, maxillary fragments were processed for paraffin embedding or for transmission electron microscopy. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the alveolar process surface and number of IL-6, MMP-1, and MMP-9-immunolabeled cells in the gingival mucosa were quantified. Statistical analyses were performed (P ≤0.05). RESULTS: In PDSG and PDCimG, gingival mucosa exhibited few collagen fibers among numerous inflammatory cells. In PDCimG, the number of TRAP-positive osteoclasts and IL-6, MMP-1, and MMP-9-immunolabeled cells was significantly lower than in PDSG at all periods. A positive correlation between IL-6/MMP-1 and IL-6/MMP-9 was detected in PDSG and PDCimG. CONCLUSION: Cimetidine decreases bone loss through reduction of osteoclast number and induces reduction of IL-6, MMP-1, and MMP-9 immunoexpression, reinforcing the idea that the beneficial effect of cimetidine in PD may be due to reduction of IL-6 immunolabeling in the inflamed gingival mucosa.


Asunto(s)
Cimetidina/farmacología , Encía/efectos de los fármacos , Encía/metabolismo , Interleucina-6/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Enfermedades Periodontales/tratamiento farmacológico , Enfermedades Periodontales/metabolismo , Animales , Técnicas para Inmunoenzimas , Masculino , Microscopía Electrónica de Transmisión , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA