Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 293(49): 18828-18840, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30309983

RESUMEN

For most retroviruses, including HIV-1, binding of the Gag polyprotein to the plasma membrane (PM) is mediated by interactions between Gag's N-terminal myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the PM. The Gag protein of avian sarcoma virus (ASV) lacks the N-myristoylation signal but contains structural domains having functions similar to those of HIV-1 Gag. The molecular mechanism by which ASV Gag binds to the PM is incompletely understood. Here, we employed NMR techniques to elucidate the molecular determinants of the membrane-binding domain of ASV MA (MA87) to lipids and liposomes. We report that MA87 binds to the polar head of phosphoinositides such as PI(4,5)P2 We found that MA87 binding to inositol phosphates (IPs) is significantly enhanced by increasing the number of phosphate groups, indicating that the MA87-IP binding is governed by charge-charge interactions. Using a sensitive NMR-based liposome-binding assay, we show that binding of MA87 to liposomes is enhanced by incorporation of PI(4,5)P2 and phosphatidylserine. We also show that membrane binding is mediated by a basic surface formed by Lys-6, Lys-13, Lys-23, and Lys-24. Substitution of these residues to glutamate abolished binding of MA87 to both IPs and liposomes. In an accompanying paper, we further report that mutation of these lysine residues diminishes Gag assembly on the PM and inhibits ASV particle release. These findings provide a molecular basis for ASV Gag binding to the inner leaflet of the PM and advance our understanding of the basic mechanisms of retroviral assembly.


Asunto(s)
Virus del Sarcoma Aviar/química , Membrana Celular/metabolismo , Productos del Gen gag/metabolismo , Ensamble de Virus/fisiología , Acilación , Sitios de Unión , Membrana Celular/química , Productos del Gen gag/química , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Liposomas/química , Liposomas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Unión Proteica , Dominios Proteicos , Electricidad Estática
2.
Int J Mol Sci ; 18(5)2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28467359

RESUMEN

We evaluated the transition of dominant resistance-associated substitutions (RASs) in hepatitis C virus during long-term follow-up after the failure of DAAs (direct acting antivirals)-based therapy. RASs in non-structure (NS)3/4A, NS5A, NS5B, and deletions in NS5A from 20 patients who failed simeprevir/pegylated-interferon/ribavirin (SMV/PEG-IFN/RBV) and 25 patients who failed daclatasvir/asunaprevir (DCV/ASV) treatment were examined by direct sequencing. With respect to SMV/PEG-IFN/RBV treatment, RAS was detected at D168 in NS3/4A but not detected in NS5A and NS5B at treatment failure in 16 of 20 patients. During the median follow-up period of 64 weeks, the RAS at D168 became less dominant in 9 of 16 patients. Among 25 DCV/ASV failures, RASs at D168, L31, and Y93 were found in 57.1%, 72.2%, and 76.9%, respectively. NS5A deletions were detected in 3 of 10 patients treated previously with SMV/PEG-IFN/RBV. The number of RASs in the breakthrough patients exceeded that in relapsers (mean 3.9 vs. 2.7, p < 0.05). RAS at D168 in NS3/4A became less dominant in 6 of 15 patients within 80 weeks. Y93H emerged at the time of relapse, then decreased gradually by 99% at 130 weeks post-treatment. Emerged RASs were associated with the clinical course of treatment and could not be detected during longer follow-up.


Asunto(s)
Farmacorresistencia Viral/genética , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Serina Proteasas/genética , Proteínas no Estructurales Virales/genética , Adulto , Anciano , Antivirales/farmacología , Antivirales/uso terapéutico , Carbamatos , Quimioterapia Combinada , Femenino , Estudios de Seguimiento , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/virología , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Interferón alfa-2 , Interferón-alfa/uso terapéutico , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Masculino , Persona de Mediana Edad , Polietilenglicoles/uso terapéutico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Pirrolidinas , Proteínas Recombinantes/uso terapéutico , Ribavirina/farmacología , Ribavirina/uso terapéutico , Simeprevir/farmacología , Simeprevir/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Factores de Tiempo , Insuficiencia del Tratamiento , Valina/análogos & derivados
3.
Chemosphere ; 329: 138665, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37044148

RESUMEN

One of the main challenges of biochar application for environmental cleanup is rise of pH in water or soil due to high ash and alkali metal contents in the biochar. While this intrinsic property of biochar is advantageous in alleviating soil and water acidity, it severely impairs the affinity of biochar toward anionic contaminants such as arsenic. This study explored a technical approach that can reduce the basicity of lignin-based biochar by utilizing FeCl3 during production of biochar. Three types of biochar were produced by co-pyrolyzing feedstock composed of different combinations of lignin, red mud (RM), and FeCl3, and the produced biochar samples were applied to adsorption of As(V). The biochar samples commonly possessed porous carbon structure embedded with magnetite (Fe3O4) particles. The addition of FeCl3 in the pyrolysis feedstock had a notable effect on reducing basicity of the biochar to yield significantly lower solution pH values than the biochar produced without FeCl3 addition. The extent of As(V) removal was also closely related to the final solution pH and the greatest As(V) removal (>77.6%) was observed for the biochar produced from co-pyrolysis of lignin, RM, and FeCl3. The results of adsorption kinetics and isotherm experiments, along with x-ray spectroscopy (XPS), strongly suggested adsorption of As(V) occurred via specific chemical reaction (chemisorption) between As(V) and Fe-O functional groups on magnetite. Thus, the overall results suggest the use of FeCl3 is a feasible practical approach to control the intrinsic pH of biochar and impart additional functionality that enables effective treatment of As(V).


Asunto(s)
Lignina , Contaminantes Químicos del Agua , Óxido Ferrosoférrico , Adsorción , Carbón Orgánico/química , Agua , Suelo , Contaminantes Químicos del Agua/química
4.
Chemosphere ; 313: 137615, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36572366

RESUMEN

In this study, a graphene oxide-based lanthanum hydroxide/chitosan foam (CSGOL foam) was synthesized for arsenate (As(V)) remediation in surface water. The synthesized CSGOL foam texture and purity was assessed using scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) studies. The results proved that the foam was highly porous, stable, and had high surface functionality that facilitated adsorption for water pollutant removal. The sorption results proved that the As(V) removal was high (146.20 mg/g at pH 6 with 0.5 g/L CSGOL foam) when compared to the similar type of materials, endothermic chemisorption due to the production of monodentate and bidentate inner-sphere complexes. Furthermore, continuous column results indicated that the As(V) concentration in real surface waters was reduced to WHO standards (less than 10 µg As/L of water) of As(V) in drinking water for up to 10,000 bed volume. Further it can be used up to four cycles without loss of efficacy less than 93%. Because of its excellent removal capabilities and simple synthesis technique, CSGOL foam shows significant promise for treating As(V)-containing water. Further, the XPS analysis and batch studies results suggests that As(V) removal mechanism was involved electrostatic and surface complexation through chemical interaction predominately.


Asunto(s)
Arseniatos , Contaminantes Químicos del Agua , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Agua/química , Adsorción , Biopolímeros , Concentración de Iones de Hidrógeno , Cinética
5.
Int J Biol Macromol ; 140: 1167-1174, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31472208

RESUMEN

Low-cost natural polymer lignin has been widely used to remove heavy metal ions from polluted water. But it still has some shortcomings, such as poor removal performance, and weak selective adsorption. Thus, in this study, the lignin prepared by Mannich reaction with black liquor was activated with triethylenetetramine (TETA) to achieve a novel adsorbent with high adsorption rates and a strong selectivity for specific oxygen-containing anions. The adsorption capacity of activated lignin (a-CL) on three oxygen-containing anions (i.e. As(V), P(V) and Cr(VI)) was investigated systematically. The adsorption mechanism of a-CL was elucidated theoretically by the density functional theory (DFT) method. Under the same conditions, the selectivity toward oxygen-containing anions by a-CL followed P(V) < Cr(VI) < As(V). Both FT-IR and DFT simulation results revealed that the hydrogen bond between HAsO42- and N dominated the remarkable selectivity of As (V), yielding a maximum adsorption capacity as high as 62.5 mg g-1. Moreover, the adsorption was very fast with a calculated large adsorption kinetic constant. The removal of As(V) reached 100% within 60 min. The As(V) adsorption kinetics and the adsorption isotherms followed the pseudo-second-order and the Langmuir model. This study provides a way for highly selecting removal of As(VI) from polluted water with the lignin.


Asunto(s)
Arsénico/aislamiento & purificación , Lignina/química , Trientina/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Concentración de Iones de Hidrógeno , Lignina/síntesis química , Conformación Molecular , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
6.
Environ Sci Pollut Res Int ; 25(27): 26757-26765, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28871496

RESUMEN

Chemical stability of As(V) in amended mine-impacted soils was assessed according to functions of incubation period (0, 1, 2, 4, and 6 months), amendment dose (2.5 and 5%), and application timing (0 and 3rd month). Six soils contaminated with 26-209 mg kg-1 of As(V) were collected from two abandoned mine sites and were treated with two alkaline iron-rich materials (mine discharge sludge (MS) and steel-making slag (SS)). Seventeen to 23% of As(V) in soils was labile. After each designated time, As(V) stability was assessed by the labile fractions determined with sequential extraction procedures (F1-F5). Over 6 months, a reduction (26.9-70.4%) of the two labile fractions (F1 and F2) and a quantitative increase (7.4-29.9%) of As(V) in F3 were observed (r 2 = 0.956). Two recalcitrant fractions (F4 and F5) remained unchanged. Temporal change of As(V) stability in a sample was well described by the two-domain model (k fast, k slow, and Ffast). The stabilization (%) correlated well with the fast-stabilizing domain (Ffast), clay content (%), and Fe oxide content (mg kg-1), but correlated poorly with kinetic rate constants (k fast and k slow). Until the 3rd month, the 2.5%-MS amended sample resulted in lower As(V) stabilization (25-40%) compared to the 5% sample (50-60%). However, the second 2.5% MS addition on the 2.5% sample upon the lapse of the 3rd month led to a substantial reduction (up to 38%) of labile As(V) fraction in the following 4th and 6th months. As a result, an additional 15-25% of As(V) stability was obtained when splitting the amendment dose into 3-month intervals. In conclusion, the As(V) stabilization by Fe-rich amendment is time-dependent and its efficacy can be improved by optimizing the amendment dose and its timing.


Asunto(s)
Arsénico/química , Contaminantes del Suelo/química , Residuos Industriales , Hierro , Minería , Suelo/química , Acero
7.
Food Chem ; 212: 65-71, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27374507

RESUMEN

In this study, for the first time electromembrane extraction (EME) was used as a highly efficient sample pre-treatment method for the UV-VIS spectrophotometric determination of As(V) in water samples. The influences of experimental parameters during EME were investigated and optimized using one-variable-at-a-time methodology as follows: organic solvent: 1-octanol+2.5% (V/V) di-(2-ethylhexyl) phosphate, applied voltage: 70V, extraction time: 15min, pH of acceptor: 13, stirring rate: 750rpm. The method allowed the determination of As(V) in the range of 5-300ngmL(-1). The relative standard deviation was found to be within the range of 3.4-7.6%. The limit of detection, corresponding to a signal to noise ratio of three, was 1.5ngmL(-1). The proposed method was finally applied to the determination of As(V) in water samples and relative recoveries ranging from 95 to 102% were obtained.


Asunto(s)
Arsénico/análisis , Espectrofotometría/métodos , 1-Octanol , Membranas Artificiales , Compuestos Orgánicos , Solventes
8.
ACS Appl Mater Interfaces ; 7(34): 19210-8, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26273843

RESUMEN

More than a billion people lack access to safe drinking water that is free from pathogenic bacteria and toxic metals. The World Health Organization estimates several million people, mostly children, die every year due to the lack of good quality water. Driven by this need, we report the development of PGLa antimicrobial peptide and glutathione conjugated carbon nanotube (CNT) bridged three-dimensional (3D) porous graphene oxide membrane, which can be used for highly efficient disinfection of Escherichia coli O157:H7 bacteria and removal of As(III), As(V), and Pb(II) from water. Reported results demonstrate that versatile membrane has the capability to capture and completely disinfect pathogenic pathogenic E. coli O157:H7 bacteria from water. Experimentally observed disinfection data indicate that the PGLa attached membrane can dramatically enhance the possibility of destroying pathogenic E. coli bacteria via synergistic mechanism. Reported results show that glutathione attached CNT-bridged 3D graphene oxide membrane can be used to remove As(III), As(V), and Pb(II) from water sample at 10 ppm level. Our data demonstrated that PGLa and glutathione attached membrane has the capability for high efficient removal of E. coli O157:H7 bacteria, As(III), As(V), and Pb(II) simultaneously from Mississippi River water.


Asunto(s)
Desinfección/métodos , Escherichia coli O157/aislamiento & purificación , Grafito/química , Membranas Artificiales , Metales Pesados/aislamiento & purificación , Nanotubos de Carbono/química , Óxidos/química , Purificación del Agua/métodos , Péptidos Catiónicos Antimicrobianos , Glutatión/química , Porosidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Ríos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA