Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677068

RESUMEN

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Asunto(s)
Cadmio , Microplásticos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Sorghum , Sorghum/efectos de los fármacos , Sorghum/microbiología , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Suelo/química , Tamaño de la Partícula , Bacterias/efectos de los fármacos
2.
Ecotoxicol Environ Saf ; 188: 109858, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31706236

RESUMEN

Cultivar-dependent cadmium (Cd) accumulation was principal in developing Cd-pollution safe cultivars (PSCs). Proteins related to different Cd accumulations of the low-Cd-accumulating (SJ19) and high-Cd-accumulating (CX4) cultivars were investigated by iTRAQ analysis. Higher Cd bioaccumulation factors and translocation factor in CX4 than in SJ19 were consistent with the cultivar-dependent Cd accumulations. The Cd uptake was promoted in CX4 due to its higher expression of Cd-binding proteins and the lower expression of Cd-efflux proteins in roots. What's more, significantly elevated thiol groups (PC2 and PC3) in CX4 under Cd stress might contribute to the high Cd accumulation in roots and the root-to-shoot translocation of Cd-PC complex. Up-regulated proteins involved in cellulose biosynthesis and pectin de-esterification in SJ19 enhanced the Cd sequestration of root cell walls, which was considered as the predominant strategy for reducing Cd accumulation in shoots. The present study provided novel insights in the cultivar-dependent Cd accumulation in shoots of B. parachinensis.


Asunto(s)
Brassica/metabolismo , Cadmio/metabolismo , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Transporte Biológico , Brassica/genética , Celulosa/metabolismo , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Proteómica , Reactivos de Sulfhidrilo/metabolismo
3.
J Hazard Mater ; 474: 134844, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852252

RESUMEN

With advances in plastic resource utilization technologies, polystyrene (PS) and sulfonated polystyrene (SPS) microplastics continue to be produced and retained in environmental media, potentially posing greater environmental risks. These plastics, due to their different physicochemical properties, may have different environmental impacts when compounded with other pollutants. The objective of this study was to investigate the combined toxic effects of PS and SPS on wheat using cadmium (Cd) as a background contaminant. The results demonstrated that Cd significantly impeded the normal growth of wheat by disrupting root development. Both PS and SPS exhibited hormesis at low concentrations and promoted wheat growth. Under combined toxicity, PS reduced oxidative stress and promoted the uptake of essential metal elements in wheat. Additionally, KEGG pathway analysis revealed that PS facilitated the repair of Cd-induced blockage of the TCA cycle and glutathione metabolism. However, high concentrations of SPS in combined toxicity not only enhanced oxidative stress and interfered with the uptake of essential metal elements, but also exacerbated the blocked TCA cycle and interfered with pyrimidine metabolism. These differences are related to the different stability (Zeta potential, Hydrodynamic particle size) of the two microplastics in the aquatic environment and their ability to carry heavy metal ions, especially Cd. The results of this study provide important insights into understanding the effects of microplastics on crops in the context of Cd contamination and their environmental and food safety implications.


Asunto(s)
Cadmio , Estrés Oxidativo , Poliestirenos , Triticum , Poliestirenos/toxicidad , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microplásticos/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes del Suelo/toxicidad
4.
Mar Pollut Bull ; 204: 116519, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850758

RESUMEN

Microplastics (MPs) have become pervasive in marine ecosystems, exerting detrimental effects on marine life. The concurrent presence and interaction of MPs and heavy metals in aquatic environments could engender more insidious toxicological impacts. This study aimed to elucidate the potential impacts and underlying mechanisms of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined stress (MPs-Cd) on sea cucumbers (Apostichopus japonicus). It focused on the growth, Cd bioaccumulation, oxidative stress responses, immunoenzymatic activities, and metabolic profiles, specifically considering PS-MPs sizes preferentially ingested by these organisms. The high-dose MPs (MH) treatment group exhibited an increase in cadmium bioavailability within the sea cucumbers. Exposure to PS-MPs or Cd triggered the activation of antioxidant defenses and immune responses. PS-MPs and Cd exhibited a synergistic effect on lysozyme (LZM) activity. A total of 149, 316, 211, 197, 215, 619, 434, and 602 differentially expressed metabolites were identified, distinguishing the low-dose MPs (ML), high-dose MPs (MH), low-dose Cd (LCd), low-dose MPs and low-dose Cd (MLLCd), high-dose MPs and low-dose Cd (MHLCd), high-dose Cd (HCd), low-dose MPs and high-dose Cd (MLHCd), high-dose MPs and high-dose Cd (MHHCd) groups, respectively. Metabolomic analyses revealed disruptions in lipid metabolism, nervous system function, signal transduction, and transport and catabolism pathways following exposure to PS-MPs, Cd, and MPs-Cd. Correlation analyses among key differentially expressed metabolites (DEMs) underscored the interregulation among these metabolic pathways. These results offer new perspectives on the distinct and synergistic toxicological impacts of microplastics and cadmium on aquatic species, highlighting the complex interplay between environmental contaminants and their effects on marine life.


Asunto(s)
Cadmio , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua , Cadmio/toxicidad , Animales , Microplásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Stichopus , Estrés Oxidativo , Adaptación Fisiológica
5.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522197

RESUMEN

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Asunto(s)
Bacillus , Metales Pesados , Contaminantes del Suelo , Sorghum , Cadmio/análisis , Biodegradación Ambiental , Plásticos , Polietileno , Suelo , Rizosfera , Microplásticos , Metales Pesados/toxicidad , Metales Pesados/análisis , Enterobacter , Contaminantes del Suelo/análisis
6.
Environ Sci Pollut Res Int ; 30(29): 73964-73973, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37202632

RESUMEN

Globally, the hazardous substance in children's goods is of great concern. Toxic chemicals are potentially harmful to the health and growth of infants and children. Lead (Pb) and cadmium (Cd)-contaminated children's jewelry is widely encountered in many countries. This study aims to determine the concentration of metal toxicants (Pb, Cd, Ni, Cu, Zn, Co, and Fe) in event-based (Independence Day festival) children's jewelry, considering time-limited and fast production products that may compromise the quality and safety parameters during manufacturing. The determinations are for the time-constraint industrial production of children's jewelry in the context of the toxic substances in a variety of base materials used. This is the first time event-based children's jewelry has been monitored and critically assessed for metal contamination. Forty-two samples, including metallic, wooden, textile, rubber, plastic, and paint-coated plastic children's jewelry, were tested. Seventy-four percent of samples detected Pb and Cd in quantifiable amounts. Ni in 71%, Cu in 67%, Co in 43%, and Zn and Fe were detected in 100% samples with quantifiable amounts. Twenty-two ID-CJ samples exceeded the US regulatory limit for Pb and four samples for Cd. However, twenty-nine samples for Pb, eleven for Cd, five for Co, and one for Cu exceeded the EU regulatory limit. The highest concentration of Pb was found in paint-coated plastic jewelry, and the highest Cd was found in metallic jewelry. These results suggest that the potential hazards of event-based children's jewelry deserve the attention of government agencies seeking to limit children's exposure to toxic chemicals. Intergovernmental organizations and individual countries regulate chemicals in consumer products, but a coordinated international approach is lacking. Some continents and countries still lack in regulations for children's products, especially jewelry, and toys.


Asunto(s)
Joyas , Metales Pesados , Lactante , Niño , Humanos , Cadmio , Plomo , Sustancias Peligrosas , Plásticos , Metales Pesados/análisis , Medición de Riesgo , Monitoreo del Ambiente
7.
Huan Jing Ke Xue ; 44(12): 6973-6981, 2023 Dec 08.
Artículo en Zh | MEDLINE | ID: mdl-38098420

RESUMEN

The combined pollution of microplastics and heavy metals can potentially interact. This may have an important impact on the growth and development of plants and the rhizosphere microbial community and function. In this study, the effects of heavy metal cadmium combined with different types of microplastics(PE and PS), different particle sizes(13 µm and 550 µm), and different concentrations(0.1% and 1%) on Pennisetum hydridum growth were studied under pot conditions. The results showed that the effects of the combined pollution of MPs and Cd on plant dry weight and Cd accumulation varied with different types, concentrations, and particle sizes of MPs, and the combined pollution stress increased, whereas the Cd content and Cd accumulation decreased. Metagenomic analysis showed that the combined contamination of MPs and Cd could change the composition of the bacterial community and reduce bacterial diversity, among which the ACE index and Chao1 index in the 550 µm 0.1% PE+Cd treatment group were the most significant. Metagenomic analysis of microbial species function showed that the main functional groups were metabolism, amino acid transport and metabolism, energy generation and conversion, and signal transduction mechanisms. Compared with that under single Cd pollution, the addition of MPs could change the gene abundance of functional groups such as metabolism, amino acid transport and metabolism, and energy generation and conversion, and the effects of different MPs types, concentrations, and particle sizes varied. In this study, metagenomics and amplification sequencing were used to analyze the effects of the combined pollution of MPs and Cd on the bacterial community and function in P. hydridum in order to provide basic data and scientific basis for the ecotoxicological effects of the combined heavy metal pollution of MPs and its biological remediation.


Asunto(s)
Metales Pesados , Microbiota , Pennisetum , Contaminantes del Suelo , Cadmio/análisis , Microplásticos/análisis , Suelo/química , Pennisetum/metabolismo , Plásticos , Rizosfera , Metales Pesados/análisis , Bacterias/metabolismo , Aminoácidos , Contaminantes del Suelo/análisis
8.
Environ Sci Pollut Res Int ; 29(28): 42913-42928, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35092588

RESUMEN

To investigate the molecular mechanism of Cd-accumulating difference between Lactuca sativa cultivars, full-length transcriptome comparison, as well as biochemical validation, have been conducted between Cd pollution-safe cultivar (Cd-PSC, cv. LYDL) and high-Cd-accumulating cultivar (cv. HXDWQ). The full-length transcriptome of L. sativa cultivars was achieved for the first time. The results showed high Cd compartmentalization in the cell wall of cv. LYDL was ascribed to the enhanced cell wall biosynthesis under Cd stress, which was consistent with the high cellular debris Cd level (32.10-43.58%). The expression levels of transporter genes in cv. HXDWQ were about 1.19 to 1.21-fold higher than those in cv. LYDL, which was in accordance with the high ratio of easy migrative Cd chemical forms (68.59-81.98%), indicating the high Cd accumulation in the shoot of cv. HXDWQ was ascribed to the higher transportation capacity in cv. HXDWQ. Moreover, the Cd-induced endoplasmic reticulum (ER) stress was associated with the higher Cd detoxification and tolerance in cv. HXDWQ rather than in cv. LYDL. The study provides new insights into the Cd-induced transcriptomic difference between L. sativa cultivars and further contributes to the molecular breeding of L. sativa Cd-PSC.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Celulosa/metabolismo , Lactuca/genética , Lactuca/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
9.
Sci Total Environ ; 807(Pt 3): 151075, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34687702

RESUMEN

Polymer materials have been widely used in the remediation of soil heavy metal contamination for their good performance in the absorption of metal ions. To reveal the effect of polymer amendment (PA) on the remediation of cadmium-contaminated cotton fields, the cadmium (Cd) fractions in soil, Cd concentration in cotton organs, bioconcentration factor (BCF) of Cd, translocation factor (TF) of Cd, and the antioxidant capacity and photosynthesis of functional leaves were evaluated combining with the transcriptomic and metabolomic analyses, in barrel experiments in the field at the flowering and boll-forming stage of cotton. The results showed that, cotton improved the tolerance to Cd through self-regulation in Cd-contaminated soil. The expression of oxoglutaric acid and jasmonic acid were down-regulated by the application of PA to improve the photosynthetic rate (7.71%-46.20%), chlorophyll content (17.59%-63.18%), chlorophyll fluorescence (7.66%-32.25%), and antioxidant enzyme activity (15.49%-45.50%) of functional leaves, and the down-regulation of the expression of jasmonic acid and up-regulation of the expression of stearic acid reduced the exchangeable Cd concentration in the soil, which reduced the transport of Cd from the root to the bolls (54.39%). Thereby, the balance of the genetic adaptation and phenotypic plasticity of cotton was achieved, and the cell structure of leaves was restored. This study deepens our understanding of the molecular mechanism of PA in the remediation of Cd contamination in cotton fields, and provides guidance for the remediation of heavy metal contamination in farmland soil and agricultural safety under drip irrigation.


Asunto(s)
Cadmio , Polímeros , Adaptación Fisiológica
10.
Sci Total Environ ; 784: 147133, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33895518

RESUMEN

Little research has focused on the combined pollution of microplastics (MPs) and heavy metals in soil, especially the mechanism of their interaction. We conducted a 45-day microcosm experiment to test the hypothesis that polyethylene (PE) MPs and cadmium (Cd) had a joint toxicity to lettuce fitness. The effects of MPs at different addition ratios on Cd bioavailability and soil properties were also investigated in the microenvironment of three levels of Cd-contaminated soils. The results showed that the 10% MPs had an adverse impact on the plant biomass and significantly decreased soil pH and cation exchange capacity (CEC), but significantly increased soil dissolved organic carbon (DOC). The presence of MPs increased the soil Cd bioavailability and plant Cd concentrations and accumulations across all three levels of Cd-contaminated soils, which potentially aggregated the combined toxicity. The amounts of the bacterial 16SRNA and the fungal ITSRNA genes displayed a hormesis effect in response to the MP addition ratios while the abundance of Cd resistance genes cadA and czcA increased across all three Cd levels. The regression path analysis indicated that MPs affected shoot Cd concentrations by altering soil properties, which directly and indirectly contributed to the alteration mechanism, while the soil pH, DOC, and Cd bioavailability played core roles. The results suggest that the co-exposure of PE MPs in heavy metal-contaminated soil may therefore increase the toxicity, uptake, accumulation, and bioavailability of heavy metals by altering the properties of the soil microenvironment, which deserves further research.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Cadmio/toxicidad , Lactuca , Microplásticos , Plásticos , Polietileno , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
11.
Plant Physiol Biochem ; 108: 90-98, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27423219

RESUMEN

Some physiological parameters and composition of the root cell walls of two maize hybrids (monocots), the sensitive Novania and the tolerant Almansa were studied after treatment with cadmium cations. After 10 days of Cd2+ treatment (1 × 10-5 M and 5 × 10-5 M), plant growth inhibition, in the sensitive hybrid in particular, as well as a certain alteration in root structure and pigment content were observed. The Cd2+ accumulation was ten times higher in the roots than in the shoots. Chemical analyses and atomic absorption spectroscopy proved that Cd2+ modified the composition of the root cell walls by a significant increase in the content of alkali-soluble polysaccharide fractions, particularly in the tolerant hybrid. An increase in the content of phenolic compounds, mainly in the tolerant hybrid, and a decrease in protein content were observed in the presence of Cd2+ in the alkali fractions. The results indicate that the changes in the cell wall polysaccharide fractions and their proportion to lignin and cellulose are obviously involved in the tolerance and/or defence against Cd2+ of the maize hybrids studied.


Asunto(s)
Cadmio/farmacocinética , Cadmio/toxicidad , Zea mays/efectos de los fármacos , Zea mays/genética , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Celulosa/metabolismo , Quimera , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Lignina/metabolismo , Monosacáridos/análisis , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA