Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biotechnol Lett ; 46(4): 531-543, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38607604

RESUMEN

Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.


Asunto(s)
Celulosomas , Etanol , Fermentación , Lignina , Saccharomyces cerevisiae , Etanol/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Celulosomas/metabolismo , Celulosomas/genética , Celulosa/metabolismo , Lacasa/metabolismo , Lacasa/genética
2.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791271

RESUMEN

Phenolic compounds from a hydroalcoholic extract of wet olive pomace were purified and concentrated by an integrated membrane process in organic media. First, UF010104 (Solsep BV) and UP005 (Microdyn Nadir) membranes were tested to be implemented in the ultrafiltration stage, with the aim of purifying the extract and obtaining a permeate enriched in phenolic compounds. Despite the high flux observed with the UF010104 membrane (20.4 ± 0.7 L·h-1·m-2, at 2 bar), the UP005 membrane was selected because of a more suitable selectivity. Even though some secoiridoids were rejected, the permeate stream obtained with this membrane contained high concentrations of valuable simple phenols and phenolic acids, whereas sugars and macromolecules were retained. Then, the ultrafiltration permeate was subjected to a nanofiltration step employing an NF270 membrane (DuPont) for a further purification and fractionation of the phenolic compounds. The permeate flux was 50.2 ± 0.2 L·h-1·m-2, working at 15 bar. Hydroxytyrosol and some phenolic acids (such as vanillic acid, caffeic acid, and ferulic acid) were recovered in the permeate, which was later concentrated by reverse osmosis employing an NF90 membrane. The permeate flux obtained with this membrane was 15.3 ± 0.3 L·h-1·m-2. The concentrated phenolic mixture that was obtained may have important applications as a powerful antioxidant and for the prevention of diabetes and neurodegenerative diseases.


Asunto(s)
Membranas Artificiales , Olea , Fenoles , Ultrafiltración , Olea/química , Ultrafiltración/métodos , Fenoles/aislamiento & purificación , Fenoles/química , Fenoles/análisis , Ósmosis , Solventes/química , Extractos Vegetales/química
3.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255761

RESUMEN

This work reports the use of cellulose as a template to prepare nanosized WO3 or NiWO4 and its application as a co-catalyst in the electro-oxidation of ethanol and glycerol. Microcrystalline cellulose was hydrolyzed with phosphotungstic acid (H3PW12O40) to prepare the nanocrystalline cellulose template. The latter was air-calcinated to remove the template and obtain nanometric WO3. Tungsten oxide was impregnated with Ni(NO3)2, which was subsequently air-calcinated to obtain the nanometric NiWO4. Elemental analysis confirmed the coexistence of nickel and tungsten, whereas thermal analysis evidenced a high thermal stability for these materials. The X-ray diffractograms displayed crystal facets of WO3 and, when Ni(II) was added, NiWO4. The transmission electron micrographs corroborated the formation of nanosized particles with average particle sizes in the range of 30 to 50 nm. Finally, to apply this material, Pt/WO3-C and Pt/WO3-NiWO4-C were prepared and used in ethanol and glycerol electro-oxidation in an alkaline medium, observing a promotional effect of the oxide and tungstate by reducing the onset potential and increasing the current density. These materials show great potential to produce clean electricity or green hydrogen, contributing to energetic transition.


Asunto(s)
Etanol , Glicerol , Oxidación-Reducción , Celulosa , Electricidad
4.
J Pak Med Assoc ; 74(3): 464-468, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38591279

RESUMEN

Objectives: To evaluate the effectiveness of ethanol compared to citric acid in the removal of oil-based calcium hydroxide from the apical third of the root canal system using passive ultrasonic irrigation. METHODS: The in vitro study was conducted from September to October 2021 at the dental clinics of the Aga Khan University Hospital, Karachi, and comprised single-rooted teeth that were selected from institutional bank of extracted teeth. They were randomly divided into group A having 70% ethanol + passive ultrasonic irrigation, group B 10% citric acid + passive ultrasonic irrigation, group C positive controls and group D negative controls. The specimens were sectioned at 1mm and 3mm from the apex and examined under a dental operating microscope. A single examiner scored the specimens on two different occasions. Data was analysed using SPSS 25. RESULTS: Of the 90 teeth, there were 40(44.4%) in each of the 2 experimental groups and 5(5.5%) in each of the 2 control groups. At 3mm apical sections, ethanol was significantly more effective in the removal of oil-based calcium hydroxide (p=0.01). However, at 1mm from the apex, there was no significant difference between the experimental groups (p=0.064). Intragroup comparison showed that for groups A and B, residual medicament at 1mm sections was significantly greater than at 3mm sections (p<0.001, p=0.003). CONCLUSIONS: Neither irrigant showed complete removal at 1mm and 3mm from the apex. However, at 3mm apical sections, 70% ethanol was significantly more effective compared to 10% citric acid.


Asunto(s)
Hidróxido de Calcio , Preparación del Conducto Radicular , Humanos , Ácido Cítrico , Cavidad Pulpar , Etanol/farmacología , Irrigantes del Conducto Radicular/uso terapéutico
5.
J Biol Chem ; 298(2): 101538, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954142

RESUMEN

The autotrophic acetogen Clostridium ljungdahlii has emerged as a major candidate in the biological conversion of one-carbon gases (CO2/CO) to bulk chemicals and fuels. Nevertheless, the regulatory pathways and downstream metabolic changes responsible for product formation and distribution in this bacterium remain minimally explored. Protein lysine acetylation (PLA), a prevalent posttranslational modification, controls numerous crucial cellular functions. Herein, we revealed a novel cross-regulatory mechanism that uses both the PLA system and transcription factors to regulate the carbon flow distribution for product formation in C. ljungdahlii. The dominant acetylation/deacetylation system (At2/Dat1) in C. ljungdahlii was found to regulate the ratio of two major products, acetic acid and ethanol. Subsequent genetic and biochemical analyses revealed that the activities of Pta and AdhE1, two crucial enzymes responsible for acetic acid and ethanol synthesis, respectively, were greatly affected by their levels of PLA. We found that the acetylation statuses of Pta and AdhE1 underwent significant dynamic changes during the fermentation process, leading to differential synthesis of acetic acid and ethanol. Furthermore, the crucial redox-sensing protein Rex was shown to be regulated by PLA, which subsequently altered its transcriptional regulation on genes responsible for acetic acid and ethanol formation and distribution. Based on our understanding of this cross-regulatory module, we optimized the ethanol synthetic pathway by modifying the acetylation status (deacetylation-mimicked mutations of crucial lysine residues) of the related key enzyme, achieving significantly increased titer and yield of ethanol, an important chemical and fuel, by C. ljungdahlii in gas fermentation.


Asunto(s)
Ácido Acético , Clostridium , Etanol , Lisina , Ácido Acético/metabolismo , Acetilación , Carbono/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Fermentación , Gases/metabolismo , Lisina/metabolismo , Poliésteres/metabolismo , Procesamiento Proteico-Postraduccional
6.
Chemistry ; 29(67): e202302384, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695254

RESUMEN

The first contact of polyphenols (tannins) with the human body occurs in the mouth, where they are known to interact with proline-rich proteins (PRPs). These interactions are important at a sensory level, especially for the development of astringency, but affect also various other biochemical processes. Employing thermodynamic measurements, fluorescence and CD spectroscopy, we investigated the binding process of the prototypical polyphenol ellagic acid (EA) to different IB-PRPs and BSA, also in the presence of ethanol, which is known to influence tannin-protein interactions. Binding of EA to BSA and the small peptide IB7-14 is weak, but very strong to IB9-37. The differences in binding strength and stoichiometry are due to differences in the binding motifs, which also lead to differences in the thermodynamic signatures of the binding process. EA binding to BSA is enthalpy-driven, whereas binding to both IB7-14 and IB9-37 is entropy-driven. The presence of 10 vol.% EtOH, as present in wines, increases the binding constant of EA with BSA and IB7-14 drastically, but not that with IB9-37; however, it changes the binding stoichiometry. These differences can be attributed to the effect of EtOH on the conformation dynamics of the proteins and to changes in hydration properties in alcoholic solution.


Asunto(s)
Polifenoles , Prolina , Humanos , Proteínas y Péptidos Salivales , Taninos/química , Etanol , Termodinámica
7.
Arch Microbiol ; 205(4): 146, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971832

RESUMEN

Rice straw is a suitable alternative to a cheaper carbohydrate source for the production of ethanol. For pretreatment efficiency, different sodium hydroxide concentrations (0.5-2.5% w/v) were tested. When compared to other concentrations, rice straw processed with 2% NaOH (w/v) yielded more sugar (8.17 ± 0.01 mg/ml). An alkali treatment induces effective delignification and swelling of biomass. The pretreatment of rice straw with 2% sodium hydroxide (w/v) is able to achieve 55.34% delignification with 53.30% cellulose enrichment. The current study shows the effectiveness of crude cellulolytic preparation from Aspergillus niger resulting in 80.51 ± 0.4% cellulose hydrolysis. Rice straw hydrolysate was fermented using ethanologenic Saccharomyces cerevisiae (yeast) and Zymomonas mobilis (bacteria). Overall, superior efficiency of sugar conversion to ethanol 70.34 ± 0.3% was obtained with the yeast compared to bacterial strain 39.18 ± 0.5%. The current study showed that pretreatment with sodium hydroxide is an effective method for producing ethanol from rice straw and yeast strain S. cerevisiae having greater fermentative potential for bioethanol production than bacterial strain Z. mobilis.


Asunto(s)
Oryza , Zymomonas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Oryza/microbiología , Hidróxido de Sodio , Zymomonas/genética , Zymomonas/metabolismo , Etanol , Fermentación , Celulosa/metabolismo , Carbohidratos , Azúcares , Hidrólisis
8.
Microb Cell Fact ; 22(1): 221, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891678

RESUMEN

Lignocellulosic biomass represents a carbon neutral cheap and versatile source of carbon which can be converted to biofuels. A pretreatment step is frequently used to make the lignocellulosic carbon bioavailable for microbial metabolism. Dilute acid pretreatment at high temperature and pressure is commonly utilized to efficiently solubilize the pentose fraction by hydrolyzing the hemicellulose fibers and the process results in formation of furans-furfural and 5-hydroxymethyl furfural-and other inhibitors which are detrimental to metabolism. The presence of inhibitors in the medium reduce productivity of microbial biocatalysts and result in increased production costs. Furfural is the key furan inhibitor which acts synergistically along with other inhibitors present in the hydrolysate. In this review, the mode of furfural toxicity on microbial metabolism and metabolic strategies to increase tolerance is discussed. Shared cellular targets between furfural and acetic acid are compared followed by discussing further strategies to engineer tolerance. Finally, the possibility to use furfural as a model inhibitor of dilute acid pretreated lignocellulosic hydrolysate is discussed. The furfural tolerant strains will harbor an efficient lignocellulosic carbon to pyruvate conversion mechanism in presence of stressors in the medium. The pyruvate can be channeled to any metabolite of interest by appropriate modulation of downstream pathway of interest. The aim of this review is to emphasize the use of hydrolysate as a carbon source for bioproduction of biofuels and other compounds of industrial importance.


Asunto(s)
Furaldehído , Lignina , Furaldehído/farmacología , Furaldehído/metabolismo , Lignina/metabolismo , Fermentación , Biocombustibles , Carbono , Piruvatos
9.
Appl Microbiol Biotechnol ; 107(2-3): 535-542, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36607404

RESUMEN

Studies on the chemical mechanisms of furfural formation showed the possibility to apply a new differential catalysis of hemicellulose - its depolymerisation and pentose dehydration to furfural. This change led to the increase in furfural yield and essential decrease of cellulose destruction. The lignocellulose residue that remains after the production of furfural may be subjected to enzymatic hydrolysis to glucose and the subsequent fermentation to ethanol. The remaining lignin appeared to be suitable for the production of additional various value-added products including medicinal mushrooms and laccase-containing enzyme complexes. Based on these developments, an innovative concept is proposed for the waste-free use of lignocellulose to obtain various valuable products. KEY POINTS: • New chemical mechanism of furfural production. • New lignocellulose pretreatment does not damage cellulose and lignin. • Lignocellulose may be processed using waste-free technology.


Asunto(s)
Etanol , Lignina , Lignina/metabolismo , Furaldehído , Celulosa , Hidrólisis , Fermentación
10.
Biosci Biotechnol Biochem ; 87(2): 217-227, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36610726

RESUMEN

Wood biomass conversion for fossil resource replacement could result in the sustainable production of chemicals, although lignin represents an obstacle to efficient polysaccharide use. White-rot fungus Phlebia sp. MG-60 reportedly selectively and aerobically degrades lignin in hardwood, then it begins cellulose saccharification from the delignified wood to produce ethanol. Environmental conditions might change white-rot fungi-driven biomass conversion. However, how the environmental response sensor affects ethanol fermentation in white-rot fungi remains elusive. In this study, we focused on MGHOG1, the yeast Hog1 homolog in Phlebia sp. MG-60, a presumably important player in osmoresponse. We generated MGHOG1 overexpressing (OE) transformants in Phlebia sp. MG-60, exhibiting slower mycelial growth compared with the wild-type under salinity stress. MGHOG1 overexpressing liquid cultures displayed suppressed mycelial growth and ethanol fermentation. Therefore, MGHOG1 potentially influences ethanol fermentation and mycelial growth in Phlebia sp. MG-60. This study provides novel insights into the regulation of white-rot fungi-mediated biomass conversion.


Asunto(s)
Basidiomycota , Polyporales , Proteínas de Saccharomyces cerevisiae , Fermentación , Lignina , Regulación hacia Arriba , Basidiomycota/metabolismo , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Bioprocess Biosyst Eng ; 46(6): 839-850, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004559

RESUMEN

Eucheuma denticulatum is a red macroalgae with a high carbohydrate content. The fermentable sugars from E. denticulatum were obtained through sequential thermal acid hydrolysis, enzymatic saccharification, and detoxification. Thermal acid hydrolysis of E. denticulatum was optimized under the condition of 10% (w/v) slurry content and 300 mM HNO3 at 121 â„ƒ for 90 min. The maximum monosaccharide concentration after thermal acid hydrolysis was 31.0 g/L with an efficiency (ETAH) of 44.7%. By further enzymatic hydrolysis of pretreated biomass solution under 20 U/mL Cellic CTec2 at 50 â„ƒ and 160 rpm for 72 h, the maximum monosaccharide concentration reached 79.9 g/L with an efficiency of 66.2% (ES). To remove 5-hydroxymethylfurfural (5-HMF), a fermentation inhibitor, absorption using 2% activated carbon was performed for 2 min. Ethanol fermentation was performed using wild-type and high galactose-adapted strains of Saccharomyces cerevisiae, Kluyveromyces marxianus, and Candida lusitaniae. As a result, galactose-adapted strains showed higher ethanol production than wild-type strains. Especially, the fermentation result by adaptively evolved S. cerevisiae produced the highest ethanol of 37.6 g/L and with YEtOH of 0.48 g/g. Moreover, the transcript level of MIG1 in the galactose-adapted strain was slightly lower than that in the wild-type strain. The application of adaptive evolution of microorganisms was efficient for bioethanol production.


Asunto(s)
Galactosa , Rhodophyta , Saccharomyces cerevisiae , Monosacáridos , Fermentación , Hidrólisis , Etanol , Biomasa
12.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835259

RESUMEN

Ni coatings with high catalytic efficiency were synthesised in this work, obtained by increasing the active surface and modifying Pd as a noble metal. Porous Ni foam electrodes were obtained by electrodeposition of Al on a nickel substrate. Deposition of Al was carried out with potential -1.9 V for a time of 60 min in NaCl-KCl-3.5 mol%AlF3 molten salt mixture at 900 °C, which is connected with the formation of the Al-Ni phase in the solid state. Dissolution of Al and Al-Ni phases was performed by application of the potential -0.5 V, which provided the porous layer formation. The obtained porous material was compared to flat Ni plates in terms of electrocatalytic properties for ethanol oxidation in alkaline solutions. Cyclic voltammetry measurements in the non-Faradaic region revealed the improvement in morphology development for Ni foams, with an active surface area 5.5-times more developed than flat Ni electrodes. The catalytic activity was improved by the galvanic displacement process of Pd(II) ions from dilute chloride solutions (1 mM) at different times. In cyclic voltammetry scans, the highest catalytic activity was registered for porous Ni/Pd decorated at 60 min, where the maximum oxidation peak for 1 M ethanol achieved +393 mA cm-2 compared to the porous unmodified Ni electrode at +152 mA cm-2 and flat Ni at +55 mA cm-2. Chronoamperometric measurements in ethanol oxidation showed that porous electrodes were characterised by higher catalytic activity than flat electrodes. In addition, applying a thin layer of precious metal on the surface of nickel increased the recorded anode current density associated with the electrochemical oxidation process. The highest activity was recorded for porous coatings after modification in a solution containing palladium ions, obtaining a current density value of about 55 mA cm-2, and for a flat unmodified electrode, only 5 mA cm-2 after 1800 s.


Asunto(s)
Níquel , Sales (Química) , Electroquímica , Porosidad , Níquel/química , Aleaciones , Solubilidad , Electrodos , Etanol/química
13.
Prep Biochem Biotechnol ; 53(6): 599-609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36129679

RESUMEN

Present study aims at sustainable utilization of sugarcane bagasse (SCB) for production of valuable prebiotic xylooligosaccharides (XOS) along with second generation ethanol. Fractionation of SCB into hemicellulose rich liquid fraction and cellulose rich solid residue was achieved using alkaline treatment. Carbohydrate rich precipitate obtained from liquid fraction was utilized for XOS production using inhouse produced endoxylanase. XOS production from SCB xylan was optimized by employing response surface methodology. Under optimized conditions, maximum XOS yield was 227.72 mg/g of carbohydrate rich precipitates. The solid residue obtained after alkaline pretreatment was used for ethanol fermentation by prehydrolysis and simultaneous saccharification and fermentation (P-SSF) process using cellulolytic enzyme cocktail and Saccharomyces cerevisiae SM1. Maximum ethanol concentration, productivity and yield were 79.76 ± 0.16 g/L, 0.83 g/L/h and 69.38%, respectively by employing P-SSF process. Based on the experimental data it can be predicted that bioconversion of 100 g raw SCB can yield 6.26 g of XOS (DP 2-DP 5), 15.95 g ethanol and 1.44 g of xylitol. Present investigation reports an integrated process for effective bioconversion of SCB into value added products by maximum utilization of cellulosic and hemicellulosic fractions simultaneously using indigenously produced fungal enzymes.


Asunto(s)
Saccharum , Administración de Residuos , Celulosa/metabolismo , Etanol , Saccharum/química , Álcalis , Hidrólisis , Fermentación , Saccharomyces cerevisiae/metabolismo
14.
Prep Biochem Biotechnol ; 53(10): 1187-1198, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36799667

RESUMEN

The GH3 ß-glucosidase gene of Myceliophthora thermophila (MtBgl3c) has been cloned and heterologously expressed in E. coli for the first time. This study highlights the important characteristics of recombinant MtBgl3c (rMtBgl3c) which make it a promising candidate in industrial applications. Optimization of the production of rMtBgl3c led to 28,000 U L-1. On purification, it has a molecular mass of ∼100 kDa. It is a broad substrate specific thermostable enzyme that exhibits pH and temperature optima at 5.0 and 55 °C, respectively. The amino acid residues Asp287 and Glu514 act as nucleophile and catalytic acid/base, respectively in the enzyme catalysis. Its low Km value (1.28 mM) indicates a high substrate affinity as compared to those previously reported. The rMtBgl3c displays a synergistic action with the commercial enzyme cocktail in the saccharification of sugarcane bagasse suggesting its utility in the cellulose bioconversion. Tolerance to solvents, detergents as well as glucose make this enzyme applicable in wine, detergent, paper and textile industries too.


Asunto(s)
Celulosa , Saccharum , Celulosa/química , beta-Glucosidasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharum/metabolismo
15.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838570

RESUMEN

Recent studies indicate that surfactants are a relatively new and effective class of corrosion inhibitors that almost entirely meet the criteria for a chemical to be used as an aqueous phase corrosion inhibitor. They possess the ideal hydrophilicity to hydrophobicity ratio, which is crucial for effective interfacial interactions. In this study, a coconut-based non-ionic surfactant, namely, coco monoethanolamide (CMEA), was investigated for corrosion inhibition behaviour against mild steel (MS) in 1 M HCl employing the experimental and computational techniques. The surface morphology was studied employing the scanning electron microscope (SEM), atomic force microscope (AFM), and contact measurements. The critical micelle concentration (CMC) was evaluated to be 0.556 mM and the surface tension corresponding to the CMC was 65.28 mN/m. CMEA manifests the best inhibition efficiency (η%) of 99.01% at 0.6163 mM (at 60 °C). CMEA performs as a mixed-type inhibitor and its adsorption at the MS/1 M HCl interface followed the Langmuir isotherm. The theoretical findings from density functional theory (DFT), Monte Carlo (MC), and molecular dynamics (MD) simulations accorded with the experimental findings. The MC simulation's assessment of CMEA's high adsorption energy (-185 Kcal/mol) proved that the CMEA efficiently and spontaneously adsorbs at the interface.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Cocos , Acero/química , Corrosión
16.
J Sci Food Agric ; 103(14): 7006-7020, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37319237

RESUMEN

BACKGROUND: Recovery of high-purity tea saponin (TS), a promising non-ionic surfactant with well-documented properties, is one of the major challenges to broadening its industrial applications. In this study, an innovative and sustainable strategy for the highly-efficient purification of TS was developed by using well-designed highly-porous polymeric adsorbents. RESULTS: The prepared Pp-A with controllable macropores (~96 nm) and appropriate surface hydrophobic properties was found more favorable for achieving high adsorption efficiency towards TS/TS-micelles. Kinetic results showed the adsorption follows the pseudo-second-order model (R2 = 0.9800), and the Langmuir model is more qualified to explicate the adsorption isotherms with Qe-TS ~ 675 mg g-1 . Thermodynamic studies revealed the monolayer adsorption of TS was an endothermic process that was conducted spontaneously. Interestingly, ethanol-driven desorption (90% v/v ethanol) of TS was rapidly (< 30 min) complete due to the possible ethanol-mediated disassembling of TS-micelles. A possible mechanism that involves the interactions between the adsorbents and TS/TS-micelles, the formation and disassembling of TS-micelles was proposed to account for the highly efficient purification of TS. Afterwards, Pp-A-based adsorption method was developed to purify TS directly from industrial camellia oil production. Through selective adsorption, pre-washing, and ethanol-driven desorption, the applied Pp-A enabled the direct isolation of high-purity TS (~96%) with a recovery ratio > 90%. Notably, Pp-A exhibited excellent operational stability and is of high potential for long-term industrial application. CONCLUSION: Results ensured the practical feasibility of the prepared porous adsorbents in purifying TS, and the proposed methodology is a promising industrial-scale purification strategy. © 2023 Society of Chemical Industry.


Asunto(s)
Camellia , Saponinas , Contaminantes Químicos del Agua , Purificación del Agua , Camellia/química , Porosidad , Micelas , Polímeros , Adsorción , Té/química , Etanol , Cinética , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
17.
Curr Genet ; 68(3-4): 319-342, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35362784

RESUMEN

The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.


Asunto(s)
Etanol , Saccharomyces cerevisiae , Fermentación , Hidrólisis , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Small ; 18(48): e2204720, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36269882

RESUMEN

Enhancing the catalytic activity of Pt-based alloy by a rational structural design is the key to addressing the sluggish kinetics of direct alcohol fuel cells. Herein, a facile one-pot method is reported to synthesize PtCuRu nanoflowers (NFs). The synergetic effect among Pt, Cu, and Ru can lower the d-band center of Pt, regulate the morphology, generate Ru-rich edge, and allow the exposure of more high index facets. The optimized Pt0.68 Cu0.18 Ru0.14 NFs exhibit outstanding electrocatalytic performances and excellent anti-poisoning abilities. The specific activities for the methanol oxidation reaction (MOR) (7.65 mA cm-2 ) and ethanol oxidation reaction (EOR) (7.90 mA cm-2 ) are 6.0 and 7.1 times higher than commercial Pt/C, respectively. The CO stripping experiment and the chronoamperometric (5000 s) demonstrate the superior anti-poisoning property and durability performance. Density functional theory calculations confirm that high metallization degree leads to the decrease of d-band center, the promotion of oxidation of CO, and improvement of the inherent activity and anti-poisoning ability. A Ru-rich edge exposes abundant high index facets to accelerate the reaction kinetics of rate-determining steps by decreasing the energy barrier for forming *HCOOH (MOR) and CC bond breaking (EOR).


Asunto(s)
Aleaciones , Etanol , Cinética
19.
Bioprocess Biosyst Eng ; 45(6): 1011-1018, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35312864

RESUMEN

This study proposed a recyclable p-toluenesulfonic acid (p-TsOH) fractionation process for co-producing lignin nanoparticles (LNPs) and fermentable sugars from lignocellulosic biorefinery biowaste (enzymatic hydrolysis residue (EHR)). The prepared LNPs were used to detoxify the inhibitors in the xylose-rich prehydrolyzate for improving ethanol production. Results showed that the EHR was fractionated into a cellulose-rich water-insoluble solid (WIS) fraction and a lignin-rich spent liquor (SL) fraction. Cellulase hydrolysis of WIS produced 97.7% of glucose yield, while the LNPs of an average particle size of 98.0 nm with 76.3 % yield (based on the untreated EHR) were obtained from the diluted SL. LNPs demonstrated higher detoxification ability than EHR at the same dosage. Moreover, the fermentability of the detoxified xylose-rich prehydrolyzate was significantly improved. The sugar utilization ratio was 94.8%, and the ethanol yield reached its peak value of 85.4% after 36 h of fermenting the detoxified xylose-rich prehydrolyzate.


Asunto(s)
Lignina , Nanopartículas , Etanol , Fermentación , Hidrólisis , Lignina/química , Xilosa
20.
Drug Dev Ind Pharm ; 48(9): 457-469, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36093810

RESUMEN

This work designates EthoLeciplex, a vesicular system consisting of phospholipid, CTAB, ethanol and water, as an innovative vesicular system for cutaneous/transfollicular minoxidil (MX) delivery. MX-loaded EthoLeciplex was fabricated by one-step fabrication process. Formulations were designed to study the effects of drug/phospholipid ratio, CTAB/phospholipid ratio, and ethanol concentration on vesicular size, PDI, surface charge and EE%. The optimized formulation was characterized by in vitro release, drug/excipient compatibility, ex vivo skin permeability and safety. A size of 83.6 ± 7.3 to 530.3 ± 29.4 nm, PDI of 0.214 ± 0.01 to 0.542 ± 0.08 and zeta potential of +31.6 ± 4.8 to +57.4 ± 12.5 mV were observed. Encapsulation efficiency was obtained in its maximum value (91.9 ± 16.2%) at the lowest drug/phospholipid ratio, median CTAB/phospholipid and the highest ethanol concentration. The optimized formulation was consisted of 0.3 as drug/lipid ratio, 1.25 as CTAB/lipid ratio and 30% ethanol concentration and showed responses' values in agreement with the predicted results. Differential scanning calorimetry studies suggested that EthoLeciplex existed in flexible state with complete incorporation of MX into lipid bilayer. The cumulative amount of MX permeated from EthoLeciplex, conventional liposome and ethanolic solution after 12 h were 36.3 ± 1.5 µg/ml, 21 ± 2.0 µg/ml and 55 ± 4.0 µg/ml respectively. Based on the remaining amount, the amount of MX accumulated in different skin layers can be predicted in descending order as follows; EthoLeciplex > conventional liposome > MX solution. EthoLeciplex produced marked disorder in the stratum corneum integrity and swelling with no features of skin toxicity. This new cationic system is a promising carrier for cutaneous/transfollicular drug delivery.


Asunto(s)
Liposomas , Minoxidil , Minoxidil/metabolismo , Liposomas/química , Cetrimonio/metabolismo , Administración Cutánea , Piel/metabolismo , Fosfolípidos/química , Etanol/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA