Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(24): e2306738, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38161257

RESUMEN

Adoptive immunotherapy utilizing natural killer (NK) cells has demonstrated remarkable efficacy in treating hematologic malignancies. However, its clinical intervention for solid tumors is hindered by the limited expression of tumor-specific antigens. Herein, lipid-PEG conjugated hyaluronic acid (HA) materials (HA-PEG-Lipid) for the simple ex-vivo surface coating of NK cells is developed for 1) lipid-mediated cellular membrane anchoring via hydrophobic interaction and thereby 2) sufficient presentation of the CD44 ligand (i.e., HA) onto NK cells for cancer targeting, without the need for genetic manipulation. Membrane-engineered NK cells can selectively recognize CD44-overexpressing cancer cells through HA-CD44 affinity and subsequently induce in situ activation of NK cells for cancer elimination. Therefore, the surface-engineered NK cells using HA-PEG-Lipid (HANK cells) establish an immune synapse with CD44-overexpressing MIA PaCa-2 pancreatic cancer cells, triggering the "recognition-activation" mechanism, and ultimately eliminating cancer cells. Moreover, in mouse xenograft tumor models, administrated HANK cells demonstrate significant infiltration into solid tumors, resulting in tumor apoptosis/necrosis and effective suppression of tumor progression and metastasis, as compared to NK cells and gemcitabine. Taken together, the HA-PEG-Lipid biomaterials expedite the treatment of solid tumors by facilitating a sequential recognition-activation mechanism of surface-engineered HANK cells, suggesting a promising approach for NK cell-mediated immunotherapy.


Asunto(s)
Receptores de Hialuranos , Ácido Hialurónico , Inmunoterapia , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Receptores de Hialuranos/metabolismo , Animales , Humanos , Inmunoterapia/métodos , Ácido Hialurónico/química , Línea Celular Tumoral , Ligandos , Ratones , Polietilenglicoles/química , Neoplasias/terapia , Neoplasias/inmunología
2.
J Microencapsul ; 41(5): 327-344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829223

RESUMEN

AIM: The work reports a novel nanophytosomal gel encapsulating Alpinia galanga (L.) Willd leaf essential oil to treat periodontal infections. METHODS: Alpinia oil-loaded nanophytosomes (ANPs) were formulated by lipid layer hydration technique and were evaluated by FESEM, cryo-TEM, loading efficiency, zeta potential, particle size, release profile etc. Selected ANPs-loaded gel (ANPsG) was evaluated by both in vitro and in vivo methods. RESULTS: Selected ANPs were spherical, unilamellar, 49.32 ± 2.1 nm size, 0.45 PDI, -46.7 ± 0.8 mV zeta potential, 9.8 ± 0.5% (w/w) loading, 86.4 ± 3.02% (w/w) loading efficiency with sustained release profile. ANPsG showed good spreadability (6.8 ± 0.3 gm.cm/sec), extrudability (79.33 ± 1.5%), viscosity (36522 ± 0.82 cps), mucoadhesive strength (44.56 ± 3.5 gf) with sustained ex vivo release tendency. Satisfied ZOI and MIC was observed for ANPsG against periodontal bacteria vs. standard/control. ANPsG efficiently treated infection in ligature induced periodontitis model. Key pharmacokinetic parameters like AUC, MRT, Vd were enhanced for ANPsG. CONCLUSION: ANPsG may be investigated for futuristic clinical studies.


Asunto(s)
Alpinia , Geles , Aceites Volátiles , Hojas de la Planta , Aceites Volátiles/química , Aceites Volátiles/administración & dosificación , Aceites Volátiles/farmacocinética , Aceites Volátiles/farmacología , Alpinia/química , Animales , Geles/química , Hojas de la Planta/química , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Enfermedades Periodontales/tratamiento farmacológico , Masculino , Nanopartículas/química , Ratas , Periodontitis/tratamiento farmacológico , Simulación por Computador
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256239

RESUMEN

Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-ß-CD or hydroxy-propyl-ß-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.


Asunto(s)
Indoles , Enfermedad de Parkinson , Surfactantes Pulmonares , Humanos , Animales , Conejos , Tensoactivos , Polímeros , Células HEK293 , Enfermedad de Parkinson/tratamiento farmacológico , Encéfalo , Lipoproteínas , Mucosa Nasal
4.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792194

RESUMEN

The theoretical interpretation of the vaginal permeability phenomenon, the evaluation of the suitability of five artificial membranes, and the prediction of the behaviors of vaginal drugs were the main objectives of this study. Franz vertical diffusion cells and different validated HPLC methods were used to measure the permeability of six vaginally administered drugs (econazole, miconazole, metronidazole, clindamycin, lidocaine, and nonoxynol-9). This study was performed (in vitro) on different membranes of polyvinylidene fluoride (PVDF), plain cellulose or cellulose impregnated with isopropyl myristate (IPM), and cellulose combined with PVDF or IPM. The results were compared with those obtained from cow vaginal tissue (ex vivo), where cellulose was proven to be the best simulant. According to the permeability profiles (Papp), the water solubility of the drugs was considered a necessary criterion for their transport in the membranes or in the tissue, while the size was important for their penetration. Furthermore, it was found that polar compounds show clear superiority when penetrating cellulose or tissue, while non-polar ones show superiority when penetrating the lipophilic PVDF membrane. Finally, a successful attempt was made to predict the Papp values (|Papp-predPapp| < 0.005) of the six drugs under study based on a PLS (Partial Least Squares) in silico simulation model.


Asunto(s)
Membranas Artificiales , Permeabilidad , Vagina , Femenino , Vagina/metabolismo , Administración Intravaginal , Animales , Polivinilos/química , Celulosa/química , Celulosa/análogos & derivados , Bovinos , Humanos , Solubilidad , Polímeros de Fluorocarbono
5.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710921

RESUMEN

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Asunto(s)
Administración Intranasal , Encéfalo , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Glicéridos , Mucosa Nasal , Tamaño de la Partícula , Verapamilo , Administración Intranasal/métodos , Animales , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Verapamilo/administración & dosificación , Verapamilo/farmacocinética , Distribución Tisular , Glicéridos/química , Mucosa Nasal/metabolismo , Disponibilidad Biológica , Ratas , Bloqueadores de los Canales de Calcio/farmacocinética , Bloqueadores de los Canales de Calcio/administración & dosificación , Poloxámero/química , Masculino , Química Farmacéutica/métodos , Ratas Wistar , Nanopartículas/química
6.
AAPS PharmSciTech ; 25(6): 160, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992299

RESUMEN

In part I, we reported Hansen solubility parameters (HSP, HSPiP program), experimental solubility at varied temperatures for TOTA delivery. Here, we studied dose volume selection, stability, pH, osmolality, dispersion, clarity, and viscosity of the explored combinations (I-VI). Ex vivo permeation and deposition studies were performed to observe relative diffusion rate from the injected site in rat skin. Confocal laser scanning microscopy (CLSM) study was conducted to support ex vivo findings. Moreover, GastroPlus predicted in vivo parameters in humans and the impact of various critical factors on pharmacokinetic parameters (PK). Immediate release product (IR) contained 60% of PEG400 whereas controlled release formulation (CR) contained PEG400 (60%), water (10%) and d-limonene (30%) to deliver 2 mg of TOTA. GastroPlus predicted the plasma drug concentration of weakly basic TOTA as function of pH (from pH 2.0 to 9). The cumulative drug permeation and drug deposition were found to be in the order as B-VI˃ C-VI˃A-VI across rat skin. This finding was further supported with CLSM. Moreover, IR and CR were predicted to achieve Cmax of 0.0038 µg/ mL and 0.00023 µg/mL, respectively, after sub-Q delivery. Added limonene in CR extended the plasma drug concentration over period of 12 h as predicted in GastroPlus. Parameters sensitivity analysis (PSA) assessment predicted that sub-Q blood flow rate is the only factor affecting PK parameters in IR formulation whereas this was insignificant for CR. Thus, sub-Q delivery CR would be promising alternative with ease of delivery to children and aged patient.


Asunto(s)
Absorción Cutánea , Solubilidad , Tartrato de Tolterodina , Animales , Ratas , Humanos , Absorción Cutánea/efectos de los fármacos , Absorción Cutánea/fisiología , Tartrato de Tolterodina/administración & dosificación , Tartrato de Tolterodina/farmacocinética , Termodinámica , Solventes/química , Piel/metabolismo , Concentración de Iones de Hidrógeno , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Terpenos/química , Terpenos/administración & dosificación , Terpenos/farmacocinética , Administración Cutánea , Limoneno/administración & dosificación , Limoneno/farmacocinética , Limoneno/química , Masculino , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos/métodos , Química Farmacéutica/métodos , Ciclohexenos/química , Ciclohexenos/farmacocinética , Ciclohexenos/administración & dosificación , Ratas Sprague-Dawley
7.
AAPS PharmSciTech ; 25(4): 66, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519779

RESUMEN

Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-ß1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-ß1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.


Asunto(s)
Catequina/análogos & derivados , Fibrosis de la Submucosa Bucal , Ratas , Animales , Fibrosis de la Submucosa Bucal/tratamiento farmacológico , Fibrosis de la Submucosa Bucal/inducido químicamente , Factor de Crecimiento Transformador beta1/efectos adversos , Hidrogeles , Mucosa Bucal , Colágeno
8.
BMC Oral Health ; 24(1): 79, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218769

RESUMEN

INTRODUCTION: Vitamin D performs various functions as a hormone by promoting calcium absorption but plays a major role in innate immunity,cell differentiation, cell maturation through its genomic effects via vitamin D receptor. The immune response also plays a major role in tooth surface and supporting structure destruction and playing a major factor in high caries formation. The inflammatory cytokines are released has proinflammatory cytokines and stimulate cells in disease process. Therefore, in the present study we have evaluated the association of salivary vitamin D, LL-37, interleukins 6 and 17A in various levels of severity of dental caries. METHOD: Ethical approval was obtained (NU/CEC/2020/0339), 377 individuals reporting to department of conservative dentistry and endodontics, AB Shetty memorial institute of dental sciences were included based on inclusion criteria. The individuals were further divided into caries free(N = 105) and caries active(N = 272) based on their caries prevalence. The salivary were collected and evaluated for vitamin D, LL-37,IL-17A and IL-6.Results were statistically analysed with SPSS vs 22 (IBM Corp, USA). Normally distributed data were expressed as mean ± SD. Skewed data were expressed as median and interquartile range. To compare (mean) outcome measures between the two groups unpaired independent t-test was applied and for values in median IQR, Mann Whitney U test was used. All statistical analysis for P value were two-sided and significance was set to P ≤ 0.05. RESULTS: The study showed that, the salivary vitamin D statistically decreased with increasing severity of caries which showed that vitamin D plays an important role in prevention of caries. Antimicrobial peptide LL-37 was higher in caries free group but was not statistically significant, salivary IL-6 level was higher in caries active group but intergroup comparison did not show significant difference. Salivary IL-17A did not show statistically significant between caries active and caries free group. CONCLUSION: The salivary levels of vitamin D may play a vital role in prevalence of dental caries and its severity which can be a underlying cause in presence of other etiological factors.


Asunto(s)
Antiinfecciosos , Caries Dental , Humanos , Vitamina D , Catelicidinas/análisis , Catelicidinas/metabolismo , Interleucina-17 , Caries Dental/epidemiología , Péptidos Antimicrobianos , Interleucina-6/metabolismo , Saliva/química , Antiinfecciosos/farmacología , Proteínas y Péptidos Salivales/metabolismo
9.
Int J Pharm ; 660: 124230, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38782156

RESUMEN

Nanofibers (NFs) have proven to be very attractive tool as drug delivery plateform among the different plethora of nanosystems, owing to their unique features. They exhibit two- and three-dimensional structures some of which mimic structural environment of the body tissues, in addition to being safe, efficacious, and biocompatible drug delivery platform. Thus, this study embarked on fabricating polyvinyl alcohol/chitosan (PVA/CS) electrospun NFs encapsulating zopiclone (ZP) drug for intranasal brain targeted drug delivery. Electrospun NFs were optimized by adopting a three factor-two level full factorial design. The independent variables were: PVA/CS ratio (X1), flow rate (X2), and applied voltage (X3). The measured responses were: fiber diameter (Y1,nm), pore size (Y2,nm) and ultimate tensile strength (UTS,Y3,MPa). The selected optimum formula had resulted in NFs diameter of 215.90 ± 15.46 nm, pore size 7.12 ± 0.27 nm, and tensile strength around 6.64 ± 0.95 MPa. In-vitro biodegradability testing confirmed proper degradation of the NFs within 8 h. Moreover, swellability and breathability assessment revealed good hydrophilicity and permeability of the prepared NFs. Ex-vivo permeability study declared boosted ex-vivo permeation with an enhancement factor of 2.73 compared to ZP suspension. In addition, optimized NFs formula significantly reduced sleep latency and prolonged sleep duration in rats compared to IV ZP drug solution. These findings demonstrate the feasibility of employing the designed NFs as an effective safe platform for intranasal delivery of ZP for insomnia management.


Asunto(s)
Administración Intranasal , Compuestos de Azabiciclo , Encéfalo , Quitosano , Sistemas de Liberación de Medicamentos , Nanofibras , Alcohol Polivinílico , Animales , Nanofibras/química , Nanofibras/administración & dosificación , Porosidad , Alcohol Polivinílico/química , Quitosano/química , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Masculino , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/farmacocinética , Ratas , Resistencia a la Tracción , Ratas Wistar , Liberación de Fármacos
10.
J Biomater Sci Polym Ed ; 35(11): 1656-1683, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767213

RESUMEN

The objective of this study is to create a nanoemulgel formulation of Ribociclib (RIBO), a highly selective inhibitor of CDK4/6 through the utilization of spontaneous emulsification method. An experimental investigation was conducted to construct pseudo-ternary phase diagram for the most favourable formulation utilizing rice bran oil, which is known for its diverse anticancer properties. The formulation consisted of varying combination of the surfactant and as the co-surfactant (Tween 80 and Transcutol, respectively) referred to as Smix and the trials were optimized to get the desired outcome. The nanoemulsion (NE) formulations that were developed exhibited a droplet size of 179.39 nm, accompanied with a PDI of 0.211. According to the data released by Opt-RIBO-NE, it can be inferred that the Higuchi model had the most favourable fit among many kinetics models considered. The results indicate that the use of nanogel preparations for the topical delivery of RIBO in breast cancer therapy, specifically RIBO-NE-G, is viable. This is supported by the extended release of the RIBO, and the appropriate level of drug permeation observed in Opt-RIBO-NE-G. Due to RIBO and Rice Bran oil, RIBO-NE-G had greater antioxidant activity, indicating its effectiveness as antioxidants. The stability of the RIBO-NE-G was observed over a period of three months, indicating a favourable shelf life. Therefore, this study proposes the utilization of an optimized formulation of RIBO-NE-G may enhance the efficacy of anticancer treatment and mitigate the occurrence of systemic side effects in breast cancer patients, as compared to the use of suspension preparation of RIBO.


Asunto(s)
Administración Cutánea , Aminopiridinas , Antineoplásicos , Neoplasias de la Mama , Emulsiones , Geles , Purinas , Neoplasias de la Mama/tratamiento farmacológico , Emulsiones/química , Aminopiridinas/química , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacocinética , Aminopiridinas/farmacología , Purinas/química , Purinas/administración & dosificación , Purinas/farmacocinética , Geles/química , Animales , Femenino , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Liberación de Fármacos , Portadores de Fármacos/química , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Aceite de Salvado de Arroz/química , Absorción Cutánea , Nanopartículas/química , Nanogeles/química , Tensoactivos/química
11.
Dentomaxillofac Radiol ; 53(3): 196-202, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38290763

RESUMEN

OBJECTIVES: To evaluate the feasibility of frozen soft tissues in simulating fresh soft tissues of pig mandibles using cone beam CT (CBCT). METHODS: Two fresh pig mandibles with soft tissues containing 2 tubes filled with a radiopaque homogeneous solution were scanned using 4 CBCT units and 2 field-of-view (FOV) sizes each. The pig mandibles were deep-frozen and scanned again. Three cross-sections were exported from each CBCT volume and grouped into pairs, with one cross-section representing a fresh and one a frozen mandible. Three radiologists compared the pairs and attributed a score to assess the relative image quality using a 5-point scale. Mean grey values and standard deviation were obtained from homogeneous areas in the tubes, compared using the Wilcoxon matched-pair signed-rank test and subjected to Pearson correlation analysis between fresh and frozen physical states (α = .05). RESULTS: Subjective evaluation revealed similarity of the CBCT image quality between fresh and frozen states. The distribution of mean grey values was similar between fresh and frozen states. Mean grey values of the frozen state in the small FOV were significantly greater than those of the fresh state (P = .037), and noise values of the frozen state in the large FOV were significantly greater than those of the fresh state (P = 0.007). Both mean grey values and noise exhibited significant and positive correlations between fresh and frozen states (P < 0.01). CONCLUSIONS: The freezing of pig mandibles with soft tissues may serve as a method to prolong their usability and working time when CBCT imaging is planned.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Mandíbula , Porcinos , Animales , Estudios de Factibilidad , Congelación , Tomografía Computarizada de Haz Cónico/métodos , Mandíbula/diagnóstico por imagen
12.
Nanomedicine (Lond) ; 19(15): 1369-1388, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900630

RESUMEN

Aim: Our investigation aims to estimate the antifungal effect of propranolol hydrochloride (PNL). Methods: Oleosomes (OLs) were fabricated by thin-film hydration and evaluated for entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and amount of drug released after 6 h Q6h (%). Results: The optimal OL showed a rounded shape with optimum characteristics. The ex-vivo permeation and confocal laser scanning microscopy verified the prolonged release and well deposition of PNL-loaded OLs-gel. The in-silico assessment demonstrated the good stability of PNL with OLs' ingredients. In vivo evaluations for PNL-loaded OLs-gel showed a good antifungal impact against Candida albicans with good safety. Conclusion: This work highlights the potential of PNL-loaded OLs-gel as a potential treatment for candida vaginal infection.


[Box: see text].


Asunto(s)
Antifúngicos , Candida albicans , Quitosano , Hidrogeles , Propranolol , Candida albicans/efectos de los fármacos , Propranolol/química , Propranolol/farmacología , Propranolol/administración & dosificación , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/administración & dosificación , Femenino , Animales , Quitosano/química , Hidrogeles/química , Tamaño de la Partícula , Humanos , Liberación de Fármacos , Liposomas/química , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Portadores de Fármacos/química , Vagina/microbiología , Vagina/efectos de los fármacos
13.
J Mech Behav Biomed Mater ; 158: 106688, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39153410

RESUMEN

Adequate primary stability is a pre-requisite for the osseointegration and long-term success of dental implants. Primary stability depends essentially on the bone mechanical integrity at the implantation site. Clinically, a qualitative evaluation can be made on medical images, but finite element (FE) simulations can assess the primary stability of a bone-implant construct quantitatively based on high-resolution CT images. However, FE models lack experimental validation on clinically relevant bone anatomy. The aim of this study is to validate such an FE model on human jawbones. Forty-seven bone biopsies were extracted from human cadaveric jawbones. Dental implants of two sizes (Ø3.5 mm and Ø4.0 mm) were inserted and the constructs were subjected to a quasi-static bending-compression loading protocol. Those mechanical tests were replicated with sample-specific non-linear homogenized FE models. Bone was modeled with an elastoplastic constitutive law that included damage. Density-based material properties were mapped based on µCT images of the bone samples. The experimental ultimate load was better predicted by FE (R2 = 0.83) than by peri-implant bone density (R2 = 0.54). Unlike bone density, the simulations were also able to capture the effect of implant diameter. The primary stability of a dental implant in human jawbones can be predicted quantitatively with FE simulations. This method may be used for improving the design and insertion protocols of dental implants.

14.
J Photochem Photobiol B ; 257: 112971, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955081

RESUMEN

Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.


Asunto(s)
Biopelículas , Luz , Mastitis Bovina , Nanopartículas , Polímeros , Animales , Bovinos , Nanopartículas/química , Mastitis Bovina/microbiología , Mastitis Bovina/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Femenino , Polímeros/química , Polímeros/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Porfirinas/química , Porfirinas/farmacología , Staphylococcus/efectos de los fármacos , Staphylococcus/efectos de la radiación , Antibacterianos/farmacología , Antibacterianos/química , Microscopía Electrónica de Rastreo , Fotoquimioterapia
15.
Int J Pharm ; 658: 124200, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38710298

RESUMEN

This study aimed to develop oral lipidic hybrids of amikacin sulfate (AMK), incorporating thiolated chitosan as a P-glycoprotein (P-gp) inhibitor to enhance intestinal absorptivity and bioavailability. Three formulations were designed: PEGylated Liposomes, Chitosan-functionalized PEGylated (Chito-PEGylated) Lipidic Hybrids, and Thiolated Chito-PEGylated Lipidic Hybrids. The physical characteristics of nanovesicles were assessed. Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted to evaluate the formulations' potential to enhance AMK intestinal permeability. In-vivo pharmacokinetic studies in rats and histological/biochemical investigations assessed the safety profile and oral bioavailability. The AMK-loaded Thiolated Chito-PEGylated Lipidic Hybrids exhibited favorable physical characteristics, higher ex-vivo permeation parameters, and verified P-gp inhibition via CLSM. They demonstrated heightened oral bioavailability (68.62% absolute bioavailability) and a sufficient safety profile. Relative bioavailability was significantly higher (1556.3% and 448.79%) compared to PEGylated Liposomes and Chito-PEGylated Lipidic Hybrids, respectively, indicating remarkable oral AMK delivery with fewer doses, reduced side effects, and enhanced patient compliance.


Asunto(s)
Amicacina , Antibacterianos , Disponibilidad Biológica , Quitosano , Lípidos , Liposomas , Polietilenglicoles , Animales , Polietilenglicoles/química , Masculino , Administración Oral , Quitosano/química , Amicacina/farmacocinética , Amicacina/administración & dosificación , Amicacina/química , Lípidos/química , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ratas , Ratas Sprague-Dawley , Absorción Intestinal , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacocinética , Ratas Wistar
16.
Biotechnol J ; 19(7): e2300751, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987220

RESUMEN

The compatibility of bone graft substitutes (BGS) with mesenchymal stem cells (MSCs) is an important parameter to consider for their use in repairing bone defects as it eventually affects the clinical outcome. In the present study, a few commercially available BGS - ß-tricalcium phosphate (ß-TCP), calcium sulfate, gelatin sponge, and different forms of hydroxyapatite (HAP) were screened for their interactions with MSCs from adipose tissue (ADSCs). It was demonstrated that HAP block favorably supported ADSC viability, morphology, migration, and differentiation compared to other scaffolds. The results strongly suggest the importance of preclinical evaluation of bone scaffolds for their cellular compatibility. Furthermore, the bone regenerative potential of HAP block with ADSCs was evaluated in an ex vivo bone defect model developed using patient derived trabecular bone explants. The explants were cultured for 45 days in vitro and bone formation was assessed by expression of osteogenic genes, ALP secretion, and high resolution computed tomography. Our findings confirmed active bone repair process in ex vivo settings. Addition of ADSCs significantly accelerated the repair process and improved bone microarchitecture. This ex vivo bone defect model can emerge as a viable alternative to animal experimentation and also as a potent tool to evaluate patient specific bone therapeutics under controlled conditions.


Asunto(s)
Tejido Adiposo , Regeneración Ósea , Diferenciación Celular , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Tejido Adiposo/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Cabeza Femoral , Osteogénesis , Células Cultivadas , Sustitutos de Huesos/química , Durapatita/química , Fosfatos de Calcio/química
17.
Int J Pharm ; 655: 124035, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38527564

RESUMEN

Lacidipine (LCD) is a potent antihypertensive agent. Fatty-based nanovesicles (FNVs) were designed to improve LCD low solubility and bioavailability. LCD-FNVs were formulated according to different proportions of cetyl alcohol, cremophor®RH40, and oleic acid adopting Box-Behnken Design. The optimized LCD-FNVs, composed of cetyl alcohol 48.4 mg, cremophor®RH40 120 mg, and oleic acid 40 mg, showed minimum vesicle size (124.8 nm), maximum entrapment efficiency % (91.04 %) and zeta potential (-36.3 mV). The optimized FNVs were then used to formulate the lyophilized orally fast-disintegrating sponge (LY-OFDS). The LY-OFDS had a very short disintegration time (58 sec), remarkably high % drug release (100 % after 15 mins), and increased the drug transbuccal permeation by over 9.5-fold compared to the drug suspension. In-vivo evaluation of antihypertensive activity in rats showed that the LY-OFDS reduced blood pressure immediately after 5 min and reached normal blood pressure 4.5-fold faster than the marketed oral tablets. In the In-vivo pharmacokinetic study in rabbits, the LY-OFDS showed 4.7-fold higher bioavailability compared with the marketed oral tablet. In conclusion, the LY-OFDS loaded with LCD-FNVs is a safe, and non-invasive approach that can deliver LCD effectively to the blood circulation via the buccal mucosa giving superior immediate capabilities of lowering high blood pressure and increasing the drug bioavailability.


Asunto(s)
Dihidropiridinas , Alcoholes Grasos , Ácido Oléico , Polietilenglicoles , Ratas , Conejos , Animales , Antihipertensivos , Solubilidad , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Administración Oral , Tamaño de la Partícula
18.
Laryngoscope ; 134(7): 3355-3362, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38379206

RESUMEN

INTRODUCTION: The round window membrane (RWM) presents a significant barrier to the local application of therapeutics to the inner ear. We demonstrate a benchtop preclinical RWM model and evaluate superparamagnetic iron oxide nanoparticles (SPIONs) as vehicles for magnetically assisted drug delivery. METHODS: Guinea pig RWM explants were inset into a 3D-printed dual chamber benchtop device. Custom-synthesized 7-nm iron core nanoparticles were modified with different polyethylene glycol chains to yield two sizes of SPIONs (NP-PEG600 and NP-PEG3000) and applied to the benchtop model with and without a magnetic field. Histologic analysis of the RWM was performed using transmission electron microscopy (TEM) and confocal microscopy. RESULTS: Over a 4-h period, 19.5 ± 1.9% of NP-PEG3000 and 14.6 ± 1.9% of NP-PEG600 were transported across the guinea pig RWM. The overall transport increased by 1.45× to 28.4 ± 5.8% and 21.0 ± 2.0%, respectively, when a magnetic field was applied. Paraformaldehyde fixation of the RWM decreased transport significantly (NP-PEG3000: 7.6 ± 1.5%; NP-PEG600: 7.0 ± 1.6%). Confocal and electron microscopy analysis demonstrated nanoparticle localization throughout all cellular layers and layer-specific transport characteristics within RWM. CONCLUSION: The guinea pig RWM explant benchtop model allows for targeted and practical investigations of transmembrane transport in the development of nanoparticle drug delivery vehicles. The presence of a magnetic field increases SPION delivery by 45%-50% in a nanoparticle size- and cellular layer-dependent manner. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3355-3362, 2024.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ventana Redonda , Cobayas , Animales , Ventana Redonda/metabolismo , Oído Interno/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/química , Microscopía Confocal , Microscopía Electrónica de Transmisión , Nanopartículas de Magnetita , Impresión Tridimensional , Polietilenglicoles/química
19.
Braz. J. Pharm. Sci. (Online) ; 58: e20123, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1403715

RESUMEN

Abstract In this study, microemulsions containing etofenamate were prepared and evaluated as dermal delivery carriers. The developed microemulsions consist of oleic acid, Span 80, Tween 20, Cremophor EL, Transcutol and ethanol. The percentage of etofenamate loading in the microemulsions was 5% (w/w). The characterization of formulations included droplet size, zeta potential, pH, conductivity, PDI, refractive index and viscosity. Moreover, ex vivo penetration study was carried out using mice abdominal skin. The developed formulations were analyzed for their cytotoxicity via MTT assay and tested for their anti-inflammatory properties opposed to LPS-stimulated nitrite prοduction in RAW 264.7 cells. As ideal formulation, M2ETF, was chosen due to its greater permeation, lower penetration as well as higher anti-inflammatory


Asunto(s)
Osteoartritis/patología , Polisorbatos , Refractometría/métodos , Piel , Antiinflamatorios no Esteroideos/efectos adversos , Células RAW 264.7/clasificación , Concentración de Iones de Hidrógeno
20.
Biosci. j. (Online) ; 37: e37038, Jan.-Dec. 2021. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1359920

RESUMEN

The present research analyzed the reciprocating instrumentation associated to chlorhexidine (CHX) substantivity as its correlation with E. faecalis viability in ex vivo root canals. Eighty extracted single-rooted human teeth were used, being 40 to high-performance liquid chromatography (HPLC) and 40 to confocal laser scanning microscopy (CLSM). In both, teeth were decoronated and the cervical third was prepared. In the CLSM analysis, the root canals were inoculated with E. faecalis for 14 days. Samples were divided into 4 groups (n=10) according to instrumentation technique: no instrumentation and irrigation with distilled water (control); manual instrumentation (K-File); rotary instrumentation (ProTaper Next); and reciprocating instrumentation (Reciproc R25). Two percent chlorhexidine was applied as irrigating substance in experimental groups. Longitudinal grooves resulted in 2 halves root and 20 proof bodies in each group. Samples were divided by chance in two groups (n=10) and the outcomes were evaluated after two days and one week. The retained chlorhexidine and live cells after instrumentation techniques in each evaluation time was measured by HPLC and CLSM, respectively. Specific analysis was applied for experimental tests (p≤0.05). Both rotary as well as reciprocating techniques significantly reduced the amount of chlorhexidine on dentin in all observation periods (p<0.05). After evaluation times, all experimental groups presented lower live cells compared to control, but without statistically difference. Intragroup comparisons in times of evaluation showed no differences in instrumentation techniques, in chlorhexidine retention and number of live cells (p>0.05). Reciprocating instrumentation does not interfere on chlorhexidine substantivity.


Asunto(s)
Humanos , Clorhexidina , Cromatografía , Enterococcus faecalis , Preparación del Conducto Radicular , Dentina , Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA