Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(49): 20736-20749, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38011905

RESUMEN

Despite their ban and restriction under the 2001 Stockholm Convention, persistent organic pollutants (POPs) are still widespread and pervasive in the environment. Releases of these toxic and bioaccumulative chemicals are ongoing, and their contribution to population declines of marine mammals is of global concern. To safeguard their survival, it is of paramount importance to understand the effectiveness of mitigation measures. Using one of the world's largest marine mammals strandings data sets, we combine published and unpublished data to examine pollutant concentrations in 11 species that stranded along the coast of Great Britain to quantify spatiotemporal trends over three decades and identify species and regions where pollutants pose the greatest threat. We find that although levels of pollutants have decreased overall, there is significant spatial and taxonomic heterogeneity such that pollutants remain a threat to biodiversity in several species and regions. Of individuals sampled within the most recent five years (2014-2018), 48% of individuals exhibited a concentration known to exceed toxic thresholds. Notably, pollutant concentrations are highest in long-lived, apex odontocetes (e.g., killer whales (Orcinus orca), bottlenose dolphins (Tursiops truncatus), and white-beaked dolphins (Lagenorhynchus albirostris)) and were significantly higher in animals that stranded on more industrialized coastlines. At the present concentrations, POPs are likely to be significantly impacting marine mammal health. We conclude that more effective international elimination and mitigation strategies are urgently needed to address this critical issue for the global ocean health.


Asunto(s)
Delfín Mular , Caniformia , Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Químicos del Agua , Orca , Animales , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente
2.
Environ Res ; 231(Pt 3): 116230, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236387

RESUMEN

BACKGROUND: Exceptional episodes of exposure to high levels of persistent organic pollutants have already been associated with developmental defects of enamel among children, but knowledge is still scarce concerning the contribution of background levels of environmental contamination. METHODS: Children of the French PELAGIE mother-child cohort were followed from birth, with collection of medical data and cord blood samples that were used to measure polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), and perfluorinated alkyl substances (PFASs). At 12 years of age, molar-incisor hypomineralization (MIH) and other enamel defects (EDs) were recorded for 498 children. Associations were studied using logistic regression models adjusted for potential prenatal confounders. RESULTS: An increasing log-concentration of ß-HCH was associated with a reduced risk of MIH and EDs (OR = 0.55; 95% CI, 0.32-0.95, and OR = 0.65; 95% CI, 0.43-0.98, respectively). Among girls, intermediate levels of p,p'-DDE were associated with a reduced risk of MIH. Among boys, we observed an increased risk of EDs in association with intermediate levels of PCB 138, PCB 153, PCB 187, and an increased risk of MIH with intermediate levels of PFOA and PFOS. CONCLUSIONS: Two OCs were associated with a reduced risk of dental defects, whereas the associations between PCBs and PFASs and EDs or MIH were generally close to null or sex-specific, with an increased risk of dental defects in boys. These results suggest that POPs could impact amelogenesis. Replication of this study is required and the possible underlying mechanisms need to be explored.


Asunto(s)
Fluorocarburos , Hipomineralización Molar , Bifenilos Policlorados , Efectos Tardíos de la Exposición Prenatal , Masculino , Embarazo , Femenino , Humanos , Niño , Contaminantes Orgánicos Persistentes , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Diclorodifenil Dicloroetileno , Relaciones Madre-Hijo , Prevalencia
3.
Environ Sci Technol ; 56(12): 8518-8527, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35671459

RESUMEN

Bis(2,4-dichlorobenzoyl)peroxide (2,4-DCBP) is used as an initiator for silicone rubber production. During hot curing, 2,4-DCBP decomposes into 2,4-dichlorobenzoic acid, 1,3-dichlorobenzene, and the polychlorinated biphenyl (PCB) congeners PCB-47, PCB-51, and PCB-68. The extent of occupational exposure to these decomposition products has not been investigated yet. We determined for the first time the corresponding internal exposure of employees (n = 104) of a German silicone rubber facility by human biomonitoring in plasma and urine. Collected samples were investigated by gas chromatography/mass spectrometry for levels of PCBs in plasma and by liquid chromatography/tandem mass spectrometry for urinary post-shift levels of 2,4-dichlorobenzoic acid (2,4-DCBA) and the metabolites 3,5-dichlorocatechol (3,5-DCK), 2,4-dichlorophenol (2,4-DCP), and 3,5-dichlorophenol (3,5-DCP). PCB-47 and PCB-68 levels correlated significantly and were found in >97% of all samples with maximum values of 4.43 and 0.77 µg/L, respectively. 2,4-DCBA, 3,5-DCK, 2,4-DCP, and 3,5-DCP were quantified in >80% of all urine samples with maximum levels of 1.46; 26.92; 7.68; and 0.39 mg/L, respectively. There is a considerable uptake of decomposition products of 2,4-DCBP in workers of a silicone rubber facility, affecting employees in all work areas. Individual levels depended on the work task. Considering the carcinogenic potential of PCBs, the workers' additional exposure to PCB-47 and PCB-68 might be of concern.


Asunto(s)
Bifenilos Policlorados , Peróxido de Benzoílo/análogos & derivados , Monitoreo Biológico , Humanos , Peróxidos , Bifenilos Policlorados/análisis , Elastómeros de Silicona
4.
Ecotoxicol Environ Saf ; 219: 112316, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33993093

RESUMEN

The long-term health of many South African estuaries is impacted by pollutants entering these systems through industrial and agricultural runoff, sewage outfalls, contaminated storm water drainage, flows from informal settlements, and plastic materials in marine debris. Uncontrolled inputs combined with poor environmental management often result in elevated levels of persistent organic pollutants (POPs) in affected estuaries. Data on POPs research from 1960 to 2020 were analysed in terms of their sources, environmental investigations, and health implications. The outcome showed polychlorinated biphenyls (PCBs) and per- and poly-fluoroalkyl sulphonates (PFASs) to exceed the US EPA health advisory levels for drinking water. Concentration of organochlorine pesticides (OCPs) in water were below the WHO limits, while those in fish tissues from most estuaries were found to be below the US FDA limits. Although environmental compartments in some estuaries (e.g. Rooiels and uMngeni estuaries) seem to be less contaminated relative to other marine systems around the world, many others were polluted and critically modified (e.g. Durban Bay, Swartkops, Sundays, and Buffalo systems). Due to inconsistent monitoring methods coupled with limited data availability, temporal trends were unclear. Of the 290 estuaries in South Africa, 65 were prioritised and recommended for POPs evaluation based on their pollution sources, and a monitoring strategy was defined in terms of sampling. Government policies to curb marine pollution need to be enforced to prevent chronic contamination that leads to water quality deterioration and loss of ecosystem services.


Asunto(s)
Contaminantes Orgánicos Persistentes , Animales , Ecosistema , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Estuarios , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Plásticos , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Sudáfrica , Contaminantes Químicos del Agua/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-34355647

RESUMEN

India has more than 202 biomedical waste incinerators, however, knowledge on the chemical characteristics of incinerator ash is lacking. The objective of this study was to evaluate the lecahablility characteristics of bottom ash and to study the levels of incineration by-products viz. polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). Bottom ash samples from 13 common biomedical waste treatment facilities (CBMWTF) were colleted and subjected to leachig test, sequential extraction procedure (SEP) and PAHs and PCBs analysis. Among metals, cadmium, chromium, manganese, lead and zinc were found higher than the regulatory limits indicating its hazardous nature. SEP showed that substantial fraction of Cd (30%) and Zn (25%) were associated with leachable fractions, whereas metals such as Cr, Fe, Mn, and Ni were mainly associated with reducible, organics and residual fractions. Concentrations of USEPA 16 priority PAHs ranged between 0.17-12.67 mg kg-1 and the total toxic equivalents (TEQ) were in the range of 0.9-421.9 ng TEQ/g. PAHs with 4-rings dominated all the samples and accounted for 68% to total PAHs concentrations. Concentration of Σ19 PCB congeners ranged from 420.4 to 724.3 µg kg-1. PCBs homologue pattern was dominated by mono- to tetra chlorinated congeners (60-86%). The findings indicate the need for segregation of plastics from biomedical waste, improvement of combustion efficiency, and efficient air pollution control devices for the existing incinerators in CBMWTFs.


Asunto(s)
Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Ceniza del Carbón , Incineración , Plásticos , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
6.
Ecotoxicol Environ Saf ; 202: 110929, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800215

RESUMEN

The aim of this study was to investigate the bioremediation potential of polychlorinated biphenyls (PCBs) in soil, mimicking three strategies: (a) mycoaugmentation: by the addition of Trametes sanguinea and Pleurotus sajor-caju co-cultures immobilized on sugarcane bagasse; (b) biostimulation: by supplementation of sugarcane bagasse; and (c) natural attenuation: no amendments. The experiments were done in microcosms using Ultisol soil. Remediation effectiveness was assessed based on pollutants content, soil characteristics, and ecotoxicological tests. Biostimulation and mycoaugmentation demonstrated the highest PCBs-removal (approx. 90%) with a significant toxicity reduction at 90 d. The studied strains were able to survive during the incubation period in non-sterilized soil. Laccase, manganese-peroxidase and endoxylanase activities increased significantly in co-cultures after 60 d. Sugarcane bagasse demonstrated to be not only a suitable support for fungal immobilization but also an efficient substrate for fungal colonization of PCBs-contaminated soils. Mycoaugmentation and biostimulation with sugarcane bagasse improved oxidable organic matter and phosphorous contents as well as dehydrogenase activity in soil. Therefore, biostimulation with sugarcane bagasse and mycoaugmentation applying dual white-rot fungal cultures constitute two efficient bioremediation alternatives to restore PCBs-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Celulosa , Ecotoxicología , Lacasa , Peroxidasas , Fósforo , Bifenilos Policlorados , Saccharum , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Trametes
7.
Cent Eur J Public Health ; 24(2): 115-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27434241

RESUMEN

AIM: The aim of this study was to investigate the seasonal fluctuation of PCDD/Fs and dl-PCBs levels in the ambient air of Upper Silesia in the aspect of human inhalation exposure as well as the estimation of health risk attributed to this exposure pathway to dioxins and dl-PCBs. METHODS: In the study air samples were taken in five urban districts of Upper Silesia, Poland, where the houses are heated with coal. The same sampling points in summer and winter were analyzed for dioxins/furans and dl-PCBs. In addition, information was collected on awareness of the residents about the co-incineration of plastic waste and effects of this activity on human health. RESULTS: The results show that the average daily exposure of residents of Upper Silesia to TCDD and DLCs in the heating season was about 6.5.-fold higher than in summer. The risk assessment showed that expected excess of cancer cases per 1,000,000 people ranged from 4.5 to 13.2 in winter and from 0.9 to 2.1 in summer. The practice of mixing waste with coal for houses heating has been confirmed by investigated families, who do not associate it with the possibility of negative health effects. CONCLUSIONS: Air pollution can be a significant source of dioxin and dl-PCB for people during the winter season, as a result of co-burning coal and waste containing plastics. The dose of dioxins inhaled through the respiratory pathway in winter can be associated with the higher cancer risk in the population of Upper Silesia.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dioxinas/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Exposición por Inhalación , Bifenilos Policlorados/análisis , Estaciones del Año , Carbón Mineral , Humanos , Incineración , Neoplasias/epidemiología , Proyectos Piloto , Plásticos , Polonia/epidemiología , Medición de Riesgo
8.
J Mol Recognit ; 28(6): 359-68, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25736423

RESUMEN

The novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers (rGO@m-MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m-MIPs was prepared by surface molecular imprinting technique. Besides, Fe3 O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3 O4 was in situ synthesis. Different from functional monomer and cross-linker in traditional molecularly imprinted polymer, here, 3,4-dichlorobenzidine was employed as dummy molecular and poly(ethylene-co-vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography-mass spectrometry (GC-MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035-0.0070 µg l(-1) and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples.


Asunto(s)
Grafito/química , Carne/análisis , Bifenilos Policlorados/aislamiento & purificación , Polietilenos/química , Polivinilos/química , Adsorción , Animales , Peces , Contaminación de Alimentos , Cinética , Fenómenos Magnéticos , Impresión Molecular , Oxidación-Reducción , Bifenilos Policlorados/química
9.
Mar Pollut Bull ; 200: 116161, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364644

RESUMEN

Microplastics (MPs) and polychlorinated biphenyls (PCBs) are pervasive pollutants in the marine environment, exerting adverse effects on marine organisms. While it is suggested that their exposure may compromise the immune responses of marine organisms, the cumulative immunotoxic effects remain uncertain. Additionally, the intricate mechanisms underlying the immunotoxicity of PCBs and MPs in marine organisms are not yet fully comprehended. To illuminate their combined biological impacts, Crassostrea gigas were exposed to 50 µg/L MPs (30-µm porous) alone, as well as 10 or 100 ng/L PCBs individually or in combination with 50 µg/L of MPs for 28 days. Our data demonstrated that oysters treated with the pollutants examined led to decreased total haemocyte count, inhibited phagocytosis of haemocytes, enhanced the intracellular contents of reactive oxygen species, lipid peroxidation and DNA damage, reduced lysozyme concentration and activity, gave rise to superoxide dismutase. Catalaseand glutathione S-transferaseactivity. The expression of three immune-related genes (NF-κB, TNF-α, TLR-6) was drastically suppressed by the PCBs and MPs treatment, while the apoptosis pathway-related genes (BAX and Caspase-3) showed a significant increase. In addition, compared to oysters treated with a single type of pollutant, coexposure to MPs and PCBs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect. Therefore, the risk of MPs and PCBs chemicals on marine organisms should be paid more attention.


Asunto(s)
Crassostrea , Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/metabolismo , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales/metabolismo
10.
Sci Total Environ ; 918: 170366, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38280605

RESUMEN

Both NPs and PCBs are emerging contaminants widely distributed in the environment, and it is worth exploring whether the combination of the two contaminants causes serious pollution and harm. Therefore, we studied the effects of PS-NPs and PCB-44 alone and together after 96 h and 21 d of exposure to C. pyrenoidosa. The results showed that PS-NPs and PCB-44 affected the cell cycle of C. pyrenoidosa and inhibited its normal growth. Under PS-NPs and PCB-44 stress, the relative conductivity of the algal solution increased, the hydrophobicity of the algal cell surface decreased, and the synthesis of chlorophyll a and chlorophyll b was reduced. In addition to physiological, there are biochemical effects on C. pyrenoidosa. PS-NPs and PCB-44 exposure induced oxidative stress with significant changes in the enzymatic activities of SOD and CAT together with MDA content. Moreover, the relative expression of photosynthesis-related genes (psbA, rbcL, rbcS) all responded, negatively affecting photosynthesis. In particular, significant toxic effects were observed with single exposure to PCB-44 and co-exposure to PS-NPs and PCB-44, with similar trends of effects in acute and chronic experiments. Taken together, exposure to PS-NPs and PCB-44 caused negative effects on the growth and physiological biochemistry of C. pyrenoidosa. These results provide scientific information to further explore the effects of NPs and PCBs on aquatic organisms and ecosystems.


Asunto(s)
Chlorella vulgaris , Bifenilos Policlorados , Contaminantes Químicos del Agua , Poliestirenos/toxicidad , Clorofila A , Microplásticos , Bifenilos Policlorados/toxicidad , Ecosistema , Contaminantes Químicos del Agua/análisis
11.
J Hazard Mater ; 465: 133277, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141308

RESUMEN

The co-exposure of microplastics (MPs) and polychlorinated biphenyls (PCBs) in soil is inevitable, but their combined effect on cycles of typical biogenic elements (e.g. C, N, Fe, S) is still unclear. And the co-exposure of MPs and PCBs caused more severe effects than single exposure to pollution. Therefore, in this study, a 255-day anaerobic incubation experiment was conducted by adding polyethylene microplastics (PE MPs, including 30 ± 10 µm and 500 µm) and PCB138. The presence of PE MPs inhibited the PCB138 degradation. Also, PE MPs addition (1%, w/w) enhanced the methanogenesis, Fe(Ⅲ) reduction, and sulfate reduction while inhibited nitrate reduction and the biodegradation of PCB138. And PCB138 addition (10 mg·kg-1) promoted the methanogenesis and Fe(Ⅲ) reduction, but inhibited sulfate reduction and nitrate reduction. Strikingly, the presence of PE MPs significantly reduced the impact of PCB138 on the soil redox processes. The abundance changes of special microbial communities, including Anaeromyxobate, Geobacter, Bacillus, Desulfitobacterium, Thermodesulfovibrio, Metanobacterium, etc., were consistent with the changes in soil redox processes, revealing that the effect of PE MPs and/or PCB138 on the cycle of typical biogenic elements was mainly achieved by altering the functional microorganisms. This study improves the knowledge of studies on the impact of MPs and combined organic pollutants to soil redox processes, which is greatly important to the stabilization and balance of biogeochemical cycling in ecology.


Asunto(s)
Bifenilos Policlorados , Humanos , Microplásticos , Plásticos , Compuestos Férricos , Nitratos , Biodegradación Ambiental , Hipoxia , Sulfatos , Suelo , Polietileno
12.
J Hazard Mater ; 470: 134107, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554520

RESUMEN

Rayon microfibers, micro-sized semi-synthetic polymers derived from cellulose, have been frequently detected and reported as "micropollutants" in marine environments. However, there has been limited research on their ecotoxicity and combined effects with persistent organic pollutants (POPs). To address these knowledge gaps, thick-shell mussels (Mytilus coruscus) were exposed to rayon microfibers at 1000 pieces/L, along with polychlorinated biphenyls (PCBs) at 100 and 1000 ng/L for 14 days, followed by a 7-day recovery period. We found that rayon microfibers at the environmentally relevant concentration exacerbated the irreversible effects of PCBs on the immune and digestive systems of mussels, indicating chronic and sublethal impacts. Furthermore, the results of 16 s rRNA sequencing demonstrated significant effects on the community structure, species richness, and diversity of the mussels' intestinal microbiota. The branching map analysis identified the responsive bacteria to rayon microfibers and PCBs belonging to the Proteobacteria, Actinobacteriota, and Bacteroidota phyla. Despite not being considered a conventional plastic, the extensive and increasing use of rayon fibers, their direct toxicological effects, and their interaction with POPs highlight the need for urgent attention, investigation, and regulation to address their contribution to "micropollution".


Asunto(s)
Microbioma Gastrointestinal , Mytilus , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Mytilus/efectos de los fármacos , Celulosa/química , Celulosa/toxicidad , ARN Ribosómico 16S/genética
13.
Mar Environ Res ; 192: 106214, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865594

RESUMEN

Numerous studies have shown that microplastics can interact with other pollutants in the environment to produce synergistic effects, leading to more serious impacts. To date, there is little consensus on the combined effects of microfibers (MFs) and polychlorinated biphenyls (PCBs, Aroclor 1254), two legacy and alarming environmental pollutants. There is an urgent need to assess the impact of combined exposures on bivalve immune defences. In this study, we assessed the immune response of the mussels (Mytilus coruscus) hemocyte to MFs and PCBs alone and in combination by using flow cytometry. M. coruscus were exposed to MFs (1000 pieces/L) and PCBs (PCBs) (100 ng/L and 1000 ng/L) alone or in combination for 14 consecutive days and recovered for 7 days. The hemocyte of M. coruscus was collected on day 7, 14 and 21. MF exposure alone had no effect on the hemocyte. The total hemocyte count (THC), esterase (EA), lysosomal contents (LC), mitochondrial number (MN) and mitochondrial membrane potential (MMP) of mussels showed a decreasing trend with increasing PCB concentrations, both individually and in combination; The decreases in EA, MN and MMP were associated with the induction of reactive oxygen species (ROS). Hemocyte mortality (HM) was associated with a decrease in THC. Combined exposure to MFs and PCBs would exacerbate the effects on hemocyte immunity. These new findings improve our understanding of the toxic effects of MFs and organic chemical pollutants, and demonstrate the potential mechanism of PCBs to bivalves through changes in hemolymph immunity-related indicators.


Asunto(s)
Contaminantes Ambientales , Mytilus , Bifenilos Policlorados , Animales , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/análisis , Hemocitos , Plásticos , Inmunidad
14.
Sci Total Environ ; 868: 161620, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36649762

RESUMEN

Enhanced bioremediation of polychlorinated biphenyls (PCBs) is a promising and effective strategy for eliminating the risks posed by PCBs. In the present study, the feasibility of utilizing an immobilization approach to enhance the PCBs degradation performance of a resuscitated strain Streptococcus sp. SPC0 was evaluated. The results indicated that a mixed matrix containing polyvinyl alcohol (PVA) and sodium alginate (SA) used as immobilized carriers provided a porous microstructure space for SPC0 colonization and proliferation. The enhanced removal of PCBs by immobilized SPC0 was attributed to simultaneous adsorption and biodegradation performances of PVA-SA-SPC0 beads. The relative equilibrium adsorption capacity of immobilized beads increased with elevated initial concentration, and the maximum theoretical value calculated was 1.64 mg/g. The adsorption process of PCBs by immobilized beads was well fitted to the quasi-second-order kinetic model, and most suitable for Langmuir isotherm model. Immobilized SPC0 enhanced PCB removal with 1.0-7.1 times higher than free cells. Especially, more effective removal of PCBs at higher concentrations could be achieved, in which 73.9 % of 20 mg/L PCBs was removed at 12 h by immobilized SPC0, whereas only 12.0 % by free cells. Moreover, the immobilized SPC0 with excellent stability and reusability retained almost 100 % of the original PCBs removal activity after reusing four times. These results revealed the application potential of immobilizing resuscitated strains for enhanced bioremediation of PCBs.


Asunto(s)
Bifenilos Policlorados , Alcohol Polivinílico/química , Biodegradación Ambiental , Alginatos/química , Adsorción , Streptococcus
15.
Sci Total Environ ; 860: 160509, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36436648

RESUMEN

The concentrations of legacy and currently emitted organic pollutants were determined in the freely dissolved phase of water from six high-mountain lakes in the Pyrenees (1619-2453 m) by passive water sampling. Low-density polyethylene (LDPE) and silicone rubber (SR) sheets were exposed for three consecutive periods lasting each one year between 2017 and 2020 for the study of polychlorinated biphenyls (PCBs), organophosphate esters (OPEs), polycyclic aromatic hydrocarbons (PAHs), and other organochlorine compounds (e.g., hexachlorobenzene, HCB). HCB concentrations (1.0-14 pg L-1) remained essentially the same as those measured with pumping systems over two decades ago in the same area. Æ©PAHs (35-920 pg L-1) were around half of those observed in the past, which agrees with reductions in European atmospheric emissions. Æ©PCB concentrations (1.2-2.2 pg L-1) were substantially lower, although unexpectedly large differences could be due to comparing yearly averages from the present study to seasonally variable (i.e., affected by snowmelt, stratification, and colloidal organic matter) episodic pumping measurements from previous studies. Æ©OPEs (139-2849 pg L-1) were measured for the first time in this area and were found at high concentrations in some sites. Concentrations of most compounds obtained with LDPE and SR samplers agreed with each other by ratios generally lower than three or four times, except for a few PAHs and OPEs. Diffusive exchange flux calculations between the atmospheric gas phase and the freely dissolved water phase revealed net deposition of pollutants from air to water, except for some OPEs and PCBs presenting equilibrium conditions, and HCB with volatilization fluxes. Atmospheric degradation fluxes of PAHs and OPEs pointed at competing removal mechanisms that support the air-to-water direction of their diffusive exchange, while PCBs and organochlorines were not affected by photodegradation. In their current state, these remote lakes accumulate many emerging and legacy pollutants subject to long-range atmospheric transport.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Clorados , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminantes Ambientales/análisis , Bifenilos Policlorados/análisis , Agua , Hexaclorobenceno/análisis , Lagos , Polietileno , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
16.
J Chromatogr A ; 1688: 463709, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36528902

RESUMEN

A porous aromatic framework (PAF-47) synthesized through Suzuki coupling reaction was introduced to prepare PAF-47/polydimethylsiloxane (PDMS) coated stir bar by sol-gel technique. PAF-47/PDMS coating provided high extraction recovery (77.6-90.6%, the ratio of actual enrichment factor (EF) to theoretical EF) for five polychlorinated biphenyls (PCBs) in a relatively short time (60 min), exhibiting a faster extraction kinetics over commercial PDMS coating (12/24 h). Based on this, a new method based on PAF-47/PDMS coated stir bar sorptive extraction and high-performance liquid chromatography-diode array detection was proposed for trace analysis of target PCBs in environmental water. Under the optimized conditions, the limits of detection for five PCBs were within 44-70 ng/L, with actual EF of 64.0-71.5-fold (maximal EF of 83.3-fold). This method was successfully used to detect trace PCBs in Yangtze River water and East Lake water, with recoveries of 81.0-113% and 86.1-111%, respectively.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Bifenilos Policlorados/análisis , Cromatografía Líquida de Alta Presión/métodos , Porosidad , Límite de Detección , Agua , Dimetilpolisiloxanos/análisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 452: 131350, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030223

RESUMEN

Polychlorinated biphenyls (PCBs) and microplastics (MPs) commonly co-exist in various environments. MPs inevitably start aging once they enter environment. In this study, the effect of photo-aged polystyrene MPs on microbial PCB dechlorination was investigated. After a UV aging treatment, the proportion of oxygen-containing groups in MPs increased. Photo-aging promoted the inhibitory effect of MPs on microbial reductive dechlorination of PCBs, mainly attributed to the inhibition of meta-chlorine removal. The inhibitory effects on hydrogenase and adenosine triphosphatase activity by MPs increased with increasing aging degree, which may be attributed to electron transfer chain inhibition. PERMANOVA showed significant differences in microbial community structure between culturing systems with and without MPs (p < 0.05). Co-occurrence network showed a simpler structure and higher proportion of negative correlation in the presence of MPs, especially for biofilms, resulting in increased potential for competition among bacteria. MP addition altered microbial community diversity, structure, interactions, and assembly processes, which was more deterministic in biofilms than in suspension cultures, especially regarding the bins of Dehalococcoides. This study sheds light on the microbial reductive dechlorination metabolisms and mechanisms where PCBs and MPs co-exist and provides theoretical guidance for in situ application of PCB bioremediation technology.


Asunto(s)
Bifenilos Policlorados , Envejecimiento de la Piel , Bifenilos Policlorados/metabolismo , Microplásticos , Plásticos , Poliestirenos , Biodegradación Ambiental , Cloro/farmacología , Cloro/metabolismo , Sedimentos Geológicos/microbiología
18.
Environ Toxicol Chem ; 41(8): 1885-1902, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35512673

RESUMEN

We evaluated the precision and accuracy of multilaboratory measurements for determining freely dissolved concentrations (Cfree ) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediment porewater using polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) polymeric samplers. Four laboratories exposed performance reference compound (PRC) preloaded polymers to actively mixed and static ex situ sediment for approximately 1 month; two laboratories had longer exposures (2 and 3 months). For Cfree results, intralaboratory precision was high for single compounds (coefficient of variation 50% or less), and for most PAHs and PCBs interlaboratory variability was low (magnitude of difference was a factor of 2 or less) across polymers and exposure methods. Variability was higher for the most hydrophobic PAHs and PCBs, which were present at low concentrations and required larger PRC-based corrections, and also for naphthalene, likely due to differential volatilization losses between laboratories. Overall, intra- and interlaboratory variability between methods (PDMS vs. LDPE, actively mixed vs. static exposures) was low. The results that showed Cfree polymer equilibrium was achieved in approximately 1 month during active exposures, suggesting that the use of PRCs may be avoided for ex situ analysis using comparable active exposure; however, such ex situ testing may not reflect field conditions. Polymer-derived Cfree concentrations for most PCBs and PAHs were on average within a factor of 2 compared with concentrations in isolated porewater, which were directly measured by one laboratory; difference factors of up to 6 were observed for naphthalene and the most hydrophobic PAHs and PCBs. The Cfree results were similar for academic and private sector laboratories. The accuracy and precision that we demonstrate for determination of Cfree using polymer sampling are anticipated to increase regulatory acceptance and confidence in use of the method. Environ Toxicol Chem 2022;41:1885-1902. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Dimetilpolisiloxanos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Humanos , Naftalenos , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Polietileno/química , Polímeros , Contaminantes Químicos del Agua/análisis
19.
Sci Total Environ ; 842: 156826, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750165

RESUMEN

Nurdles, also known as plastic resin pellets, are now a major source of plastic pollution on beaches globally, thus it is important to elucidate their weathering patterns and environmental fates as well as the associated pollutants. In this study we collected nurdles from 24 sites in the coastal bend region of south Texas, covering areas from the near shore railway stations to the adjacent bays and barrier islands. The morphologies of nurdles and associated pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and mercury, were investigated. The results showed that the nurdles varied greatly in color, shape, polymer composition, and oxidation degree. More than 80 % of the nurdles were made with polyethylene, and the rest with polypropylene, polyester, polystyrene, polyethylene-vinyl acetate, and polyvinyl chloride based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. PCBs were not detected on nurdles. PAHs and mercury on nurdles were detected at 12 % and 20 % of the sampling sites. The total concentrations of detectable PAHs ranged from 92.59 to 1787.23 ng/g-nurdle, and the detectable mercury concentrations ranged from 1.23 to 22.25 ng/g-nurdle. Although the concentrations of these pollutants were not at the acute toxic effect level, the presence of PAHs and mercury suggested the potential risk of pollutant exposure to marine organisms in ecosystems, given the fact that nurdles are persistent in the environment.


Asunto(s)
Contaminantes Ambientales , Mercurio , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Mercurio/análisis , Plásticos/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Polietilenos/análisis , Texas , Contaminantes Químicos del Agua/análisis
20.
Mar Pollut Bull ; 185(Pt B): 114322, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36427378

RESUMEN

The present study reports the first experimental microplastic-mediated transfer of a key PCB congener into adult specimens of the sea urchin Paracentrotus lividus. Three experiments were conducted to assess whether 14C-PCB-153 adsorbed onto negatively buoyant microplastics (MPs) (500-600 µm) is bioavailable to the sea urchin: (1) exposure to a low concentration of 14C-PCB-153 sorbed onto a high number of virgin MPs ("lowPCB highMP" experiment), (2) exposure to a high concentration of 14C-PCB-153 sorbed onto a relatively low number of virgin MPs ("highPCB lowMP" experiment), and (3) exposure to a low concentration of 14C-PCB-153 sorbed onto a relatively low number of aged MP ("lowPCB lowMP" experiment). Results showed that the transfer of 14C-PCB-153 from MPs to sea urchin tissues occurred in each of the three 15-day experiments, suggesting that MPs located on the seafloor may act as vectors of PCB-153 to sea urchins even during short-term exposure events.


Asunto(s)
Paracentrotus , Bifenilos Policlorados , Animales , Microplásticos , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA