Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671612

RESUMEN

Cell culture media influence the characteristics of human osteogenic periosteal sheets. We have previously found that a stem cell medium facilitates growth and collagen matrix formation in vitro and osteogenesis in vivo. However, it has not yet been demonstrated which culture medium is superior for osteoclastogenesis, a prerequisite for reconstruction of normal bone metabolic basis. To address this question, we compared chemotaxis and osteoclastogenesis in tissue-engineered periosteal sheets (TPSs) prepared with two types of culture media. Periosteal tissues obtained from adult volunteers were expanded with the conventional Medium 199 or with the stem cell medium, MesenPRO. Hematopoietic enhanced-green-fluorescent-protein (EGFP)-nude mice were prepared by γ-irradiation of Balb/c nu/nu mice and subsequent transplantation of bone marrow cells from CAG-EGFP C57BL/6 mice. TPSs were implanted subcutaneously into the chimeric mice and retrieved after intervals for immunohistopathological examination. EGFP+ cells were similarly recruited to the implantation site in both the TPSs prepared, whereas the distribution of CD11b+ cells was significantly lower in the TPS prepared with the stem cell medium. Instead, osteoclastogenesis was higher in the TPS prepared with the stem cell medium than in the one prepared with the conventional medium. These findings suggest that the stem cell medium is preferable for the preparation of more functional TPSs.


Asunto(s)
Materiales Biocompatibles , Medios de Cultivo/farmacología , Osteoclastos/citología , Periodoncio/citología , Ingeniería de Tejidos/métodos , Adulto , Animales , Trasplante de Médula Ósea , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Ensayo de Materiales , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Adulto Joven
2.
Pharm Dev Technol ; 26(9): 1000-1009, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34396913

RESUMEN

Conventional non-pH-sensitive liposomes for cytoplasmic delivery of protein suffer from poor efficiency. Here we investigated mannosylated pH-sensitive liposomes (MAN-PSL) for cytoplasmic delivery of protein to macrophages RAW 264.7 using PSL and non-pH-sensitive liposomes for comparison. We characterised the pH-dependent fluorescence of green fluorescent protein (GFP) and encapsulated it in liposomes as an intracellular trafficking tracer. GFP showed a reversed 'S'-shaped pH-fluorescence curve with a dramatic signal loss at acidic pH. GFP stored at 4 °C with light protection showed a half-life of 10 days (pH 5-8). The entrapment efficiency of GFP was dominated by the volume ratio of intraliposomal core to external medium for thin-film hydration. Mannosylation did not affect the pH-responsiveness of PSL. Confocal microscopy elucidated that mannosylation promoted the cellular uptake of PSL. For both these liposomes, the strongest, homogeneously distributed GFP fluorescence in the cytoplasm was found at 3 h, confirming efficient endosomal escape of GFP. Conversely, internalisation of non-pH-sensitive liposomes was slow (peaked at 12 h) and both Nile Red and GFP signals remained weak and punctuated in the cytosol. In conclusion, GFP performed as a probe for endosome escape of liposomal cargo. Mannosylation facilitated the internalisation of PSL without compromising their endosomal escape ability.


Asunto(s)
Citoplasma/metabolismo , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Macrófagos/metabolismo , Manosa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citoplasma/efectos de los fármacos , Endosomas/efectos de los fármacos , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/síntesis química , Concentración de Iones de Hidrógeno , Liposomas , Sustancias Luminiscentes/administración & dosificación , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/metabolismo , Macrófagos/efectos de los fármacos , Manosa/administración & dosificación , Manosa/síntesis química , Ratones , Microscopía Confocal/métodos , Células RAW 264.7
3.
J Struct Biol ; 205(1): 78-83, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30458241

RESUMEN

In a number of conformational diseases, intracellular accumulation of proteins bearing non-native conformations occurs. The search for compounds that are capable of hindering the formation and accumulation of toxic protein aggregates and fibrils is an urgent task. Present fluorescent methods of fibrils' detection prevent simple real-time observations. We suppose to use green fluorescent protein fused with target protein and fluorescence lifetime measurement technique for this purpose. The recombinant proteins analyzed were produced in E. coli. Mass spectrometry was used for the primary structure of the recombinant proteins and post-translational modifications identification. The fluorescence lifetime of the superfolder green fluorescent protein (SF) and the SF protein fused with islet amyloid polypeptide (SF-IAPP) were studied in polyacrylamide gel using Fluorescent-Lifetime Imaging Microscopy (FLIM). It was shown that the SF average fluorescence lifetime in gel slightly differs from that of the SF-IAPP monomer under these conditions. SF-IAPP does not lose the ability to form amyloid-like fibrils. Under the same conditions (in polyacrylamide gel), SF and SF-IAPP monomers have similar fluorescence time characteristics and the average fluorescence lifetime of SF-IAPP in fibrils significantly decreases. We propose the application of FLIM to the measurement of average fluorescence lifetimes of fusion proteins (amyloidogenic protein-SF) in the context of studies using cellular models of conformational diseases.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Imagen Óptica/métodos , Proteínas Recombinantes/química , Resinas Acrílicas/farmacología , Amiloide , Animales , Escherichia coli/genética , Fluorescencia , Semivida , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Pliegue de Proteína , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética
4.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31101614

RESUMEN

Tagging of bacteria with fluorescent proteins has become an essential component of modern microbiology. Fluorescent proteins can be used to monitor gene expression and biofilm growth and to visualize host-pathogen interactions. Here, we developed a collection of fluorescent protein reporter plasmids for Streptococcus mutans UA159 and other oral streptococci. Using superfolder green fluorescent protein (sfGFP) as a reporter for transcriptional activity, we were able to characterize four strong constitutive promoters in S. mutans These promoter-sfgfp fusions worked both for single-copy chromosomal integration and on a multicopy plasmid, with the latter being segregationally stable in the absence of selective pressure under the conditions tested. We successfully labeled S. mutans UA159, Streptococcus gordonii DL1, and Streptococcus sp. strain A12 with sfGFP, DsRed-Express2 (red), and citrine (yellow). To test these plasmids under more challenging conditions, we performed mixed-species biofilm experiments and separated fluorescent populations using fluorescence-activated cell sorting (FACS). This allowed us to visualize two streptococci at a time and quantify the amounts of each species simultaneously. These fluorescent reporter plasmids add to the genetic toolbox available for the study of oral streptococci.IMPORTANCE Oral streptococci are the most abundant bacteria in the mouth and have a major influence on oral health and disease. In this study, we designed and optimized the expression of fluorescent proteins in Streptococcus mutans and other oral streptococci. We monitored the levels of expression and noise (the variability in fluorescence across the population). We then created several fluorescent protein delivery systems (green, yellow, and red) for use in oral streptococci. The data show that we can monitor bacterial growth and interactions in situ, differentiating between different bacteria growing in biofilms, the natural state of the organisms in the human mouth. These new tools will allow researchers to study these bacteria in novel ways to create more effective diagnostic and therapeutic tools for ubiquitous infectious diseases.


Asunto(s)
Biopelículas , Proteínas Luminiscentes/metabolismo , Técnicas Microbiológicas/métodos , Boca/microbiología , Streptococcus gordonii/fisiología , Streptococcus mutans/fisiología , Fluorescencia
5.
Anal Biochem ; 570: 32-42, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710511

RESUMEN

Utilizing flow cytometry to monitor progress of bulk biochemical reactions and concentration of chemical species normally relies on the utilization of cells carrying intrinsic fluorescence or modified beads. We present a method for a simple measurement of the fluorescent marker molecule fluorescein and GFPuv in bulk solutions with high sensitivity using a CytoFLEX flow cytometer and without the need for modified beads. Polystyrene beads were used to trigger measurements based on their high scatter signal, to detect the fluorescence signal from two different fluorophores present in the sample solution. We report sensitivities of 33 pg/mL for fluorescein and 50 ng/mL for GFPuv. This method is comparable in sensitivity to a typical spectrometric fluorescence assay tested with fluorescein, and approximately ten times more sensitive for the measurement of GFPuv. PEG was added to the sample at a low concentration of 0.001% (w/v) to block unspecific GFPuv binding to the beads. The method was further applied to measure the GFPuv concentration in crude cell lysate samples used for cell free protein expression. An advantage of this method over spectrometric assays is the ability to differentiate signal subpopulations in the sample based on their individual fluorescence intensities.


Asunto(s)
Citometría de Flujo/métodos , Proteínas Fluorescentes Verdes/química , Soluciones/química , Adsorción , Polietilenglicoles/química
6.
Nano Lett ; 18(9): 5562-5568, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30052457

RESUMEN

An ideal gene carrier requires an excellent gating system to efficiently load, protect, deliver, and release environmentally sensitive nucleic acids on demand. Presented in this communication is a polymersome with a "boarding gate" and a "debarkation gate" in the membrane to complete the above important missions. This dually gated polymersome is self-assembled from a block copolymer, poly(ethylene oxide)- block-poly[ N-isopropylacrylamide- stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin- stat-2-(diethylamino)ethyl methacrylate] [PEO- b-P(NIPAM- stat-CMA- stat-DEA)]. The hydrophilic PEO chains form the coronas of the polymersome, whereas the temperature and pH-sensitive P(NIPAM- stat-CMA- stat-DEA) block forms the dually gated heterogeneous membrane. The temperature-controlled "boarding gate" can be opened at room temperature for facile encapsulation of siRNA and plasmid DNA into polymersomes directly in aqueous solution. The "debarkation gate" can be triggered by proton sponge effect for intracellular release. Biological studies confirmed the successful encapsulation of siRNA and plasmid DNA, efficient in vitro and in vivo gene transfection, and the expression of green fluorescent protein (GFP) from GFP-encoding plasmid, suggesting that this kind of polymersome with a dual gating system can serve as an excellent biomacromolecular shuttle for gene delivery and other biological applications.


Asunto(s)
Acrilamidas/química , ADN/administración & dosificación , Técnicas de Transferencia de Gen , Metacrilatos/química , Plásmidos/administración & dosificación , Polietilenglicoles/química , ARN Interferente Pequeño/administración & dosificación , Animales , Línea Celular , Cumarinas/química , ADN/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ratones Desnudos , Plásmidos/genética , ARN Interferente Pequeño/genética , Temperatura , Transfección/métodos
7.
Molecules ; 23(7)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958475

RESUMEN

Green fluorescent protein (GFP) is considered to be suitable for cell viability testing. In our study, GFP transfected A549 lung carcinoma cell line was treated with sodium fluoride (NaF), cycloheximide (CHX) and ochratoxin A (OTA). GFP fluorescence, intracellular ATP, nucleic acid and protein contents were quantified by a luminescence microplate assay developed in our laboratory. Flow cytometry was used to confirm the findings and to assess the intensity of GFP during different types of cell death. A 24 h NaF and CHX exposure caused a dramatic decrease in ATP contents (p < 0.05) compared with those of the controls. GFP fluorescence of the cells was in close correlation with total protein; however, GFP/ATP increased at NaF and decreased at CHX treatments (p < 0.05). ATP/protein and ATP/propidium iodide (PI) were largely decreased at NaF exposure in a dose-dependent manner (p < 0.05), while CHX and OTA showed markedly fewer effects. Both treatments caused apoptosis/necrosis at different rates. NaF induced mainly late apoptosis while OTA, mainly apoptosis. CHX effects varied by the incubation time with 100-fold elevation in late apoptotic cells at 24 h treatment. GFP intensity did not show a significant difference between live and apoptotic populations. Our results suggest when using GFP, a multiparametric assay is necessary for more precise interpretation of cell viability.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Proteínas Fluorescentes Verdes/química , Células A549 , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Cicloheximida/farmacología , Citometría de Flujo , Humanos , Proteínas Luminiscentes/metabolismo , Ocratoxinas/farmacología , Propidio/farmacología , Fluoruro de Sodio/farmacología
8.
J Gene Med ; 18(11-12): 331-342, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27706881

RESUMEN

BACKGROUND: One of the major challenges limiting the development of gene therapy is an absence of efficient and safe gene carriers. Among the nonviral gene delivery methods, lipofection is considered as one of the most promising. In the present study, a set of cationic polyprenyl derivatives [trimethylpolyprenylammonium iodides (PTAI)] with different lengths of polyprenyl chains (from 7, 8 and 11 to 15 isoprene units) was suggested as a component of efficient DNA vehicles. METHODS: Optimization studies were conducted for PTAI in combination with co-lipid dioleoylphosphatidylethanolamine on DU145 human prostate cancer cells using: size and zeta potential measurements, confocal microscopy, the fluorescein diacetate/ethidium bromide test, cell counting, time-lapse monitoring of cell movement, gap junctional intercellular coupling analysis, antimicrobial activity assay and a red blood cell hemolysis test. RESULTS: The results obtained show that the lipofecting activity of PTAI allows effective transfection of plasmid DNA complexed in negatively-charged lipoplexes of 200-500 nm size into cells without significant side effects on cell physiology (viability, proliferation, morphology, migration and gap junctional intercellular coupling). Moreover, PTAI-based vehicles exhibit a potent bactericidal activity against Staphylococcus aureus and Escherichia coli. The developed anionic lipoplexes are safe towards human red blood cell membranes, which are not disrupted in their presence. CONCLUSIONS: The developed carriers constitute a group of promising lipofecting agents of a new type that can be utilized as effective lipofecting agents in vitro and they are also an encouraging basis for in vivo applications.


Asunto(s)
Compuestos de Amonio/toxicidad , Terpenos/toxicidad , Transfección , Compuestos de Amonio/química , Aniones , Antibacterianos/química , Antibacterianos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Escherichia coli , Terapia Genética , Hemolíticos/química , Hemolíticos/toxicidad , Humanos , Liposomas , Tamaño de la Partícula , Staphylococcus aureus , Terpenos/química
9.
Int J Med Sci ; 12(7): 544-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26180510

RESUMEN

Using a model of experimental occlusal trauma in mice, we investigated cytological kinetics of periodontal ligament by means of histopathological, immunohistochemical, and photographical analysis methods. Periodontal ligament cells at furcation areas of molar teeth in the experimental group on day 4 showed a proliferation tendency of periodontal ligament cells. The cells with a round-shaped nucleus deeply stained the hematoxylin and increased within the day 4 specimens. Ki67 positive nuclei showed a prominent increase in the group on days 4 and 7. Green Fluorescent Protein (GFP) positivity also revealed cell movement but was slightly slow compared to Ki67. It indicated that restoration of mechanism seemed conspicuous by osteoclasts and macrophages from bone-marrow-derived cells for the periodontal ligament at the furcation area. It was suggested that the remodeling of periodontal ligament with cell acceleration was evoked from the experiment for the group on day 4 and after day 7. Periodontal ligament at the furcation area of the molar teeth in this experimental model recovered using the cells in situ and the bone-marrow-derived cells.


Asunto(s)
Forma de la Célula , Oclusión Dental Traumática/fisiopatología , Diente Molar/fisiopatología , Ligamento Periodontal/fisiopatología , Animales , Células de la Médula Ósea/patología , Oclusión Dental Traumática/genética , Humanos , Macrófagos/patología , Ratones , Osteoclastos/patología
10.
Biochim Biophys Acta ; 1828(9): 2182-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23747296

RESUMEN

The human endothelin receptors are members of the rhodopsin class A of G-protein coupled receptors and key modulators of blood pressure regulation. Their functional in vitro characterization has widely been limited by the availability of high quality samples. We have optimized cell-free expression protocols for the human endothelin A and endothelin B receptors by implementing co-translational association approaches of the synthesized proteins with supplied liposomes or nanodiscs. Efficiency of membrane association and ligand binding properties of the receptors have systematically been studied in correlation to different membrane environments and lipid types. Ligand binding was analyzed by a number of complementary assays including radioassays, surface plasmon resonance and fluorescence measurements. High affinity binding of the peptide ligand ET-1 to both endothelin receptors could be obtained with several conditions and the highest Bmax values were measured in association with nanodiscs. We could further obtain the characteristic differential binding pattern of the two endothelin receptors with a panel of selected agonists and antagonists. Two intrinsic properties of the functionally folded endothelin B receptor, the proteolytic processing based on conformational recognition as well as the formation of SDS-resistant complexes with the peptide ligand ET-1, were observed with samples obtained from several cell-free expression conditions. High affinity and specific binding of ligands could furthermore be obtained with non-purified receptor samples in crude cell-free reaction mixtures, thus providing new perspectives for fast in vitro screening applications.


Asunto(s)
Endotelina-1/química , Liposomas/química , Receptor de Endotelina A/química , Receptor de Endotelina B/química , Sistema Libre de Células/metabolismo , Detergentes/química , Endotelina-1/metabolismo , Expresión Génica , Humanos , Cinética , Nanoestructuras/química , Unión Proteica , Pliegue de Proteína , Receptor de Endotelina A/biosíntesis , Receptor de Endotelina A/genética , Receptor de Endotelina B/biosíntesis , Receptor de Endotelina B/genética
11.
Food Chem ; 438: 138043, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37992606

RESUMEN

Listeria monocytogenes, a severe foodborne pathogen causing severe diseases underscores the necessity for the development of a detection system with high specificity, sensitivity and utility. Herein, the PoreGlow system, based on split green fluorescent protein (GFP), was developed and assessed for the fast and accurate detection of L. monocytogenes. Split GFP-encapsulated liposomes were optimized for targeted analysis. The system utilizes listeriolysin O (LLO), a toxin produced by L. monocytogenes that enlarges the pores split GFP-encapsulated liposomes, to detect L. monocytogenes by measuring the fluorescent signal generated when the encapsulated GFP is released and reacted with the externally added fragment of the split GFP. The system exhibited a limit of detection of 0.17 µg/ml for LLO toxin and 10 CFU/mL for L. monocytogenes with high sensitivity and specificity and no cross-reactivity with other bacteria. The PoreGlow system is practical, rapid, and does not require sample pre-treatment, making it a promising tool for the early detection of L. monocytogenes in food products, which is crucial for preventing outbreaks and protecting public health.


Asunto(s)
Listeria monocytogenes , Listeriosis , Humanos , Listeria monocytogenes/genética , Listeriosis/metabolismo , Listeriosis/microbiología , Proteínas Fluorescentes Verdes/genética , Liposomas/metabolismo , Proteínas Hemolisinas/genética
12.
ACS Appl Bio Mater ; 7(10): 6477-6491, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39256188

RESUMEN

Biomacromolecules are viewed as promising drugs due to their specific functions in biological processes, biocompatibility, and pharmacological efficacy. Injective administration, chosen to avoid intestinal barriers, may in turn lead to immediate decay in the circulation system, unreliable targeting performance, or the induction of immune responses. For some biomacromolecules, chemically modified proteins have been developed for practical use. Various cargo or carrier systems are under development but have been delayed by technical difficulties. We present self-assembled nanocapsules with diameters ranging from 100 to 500 nm that can be deployed in physiological buffers to enclose various substances present in the buffers at the same time. Our amphiphilic nanocapsule, consisting of silole-core dendrimer products as the hydrophobic part and green fluorescent protein (GFP) derivatives as the hydrophilic part, connects and assembles spontaneously when mixed in solutions while engulfing dissolved or dispersed compounds together in a dose-dependent manner and shows unique optical characteristics because the dendrimer products exhibit aggregation-induced emission. Furthermore, the emission of the dendrimer causes considerable fluorescence resonance energy transfer (FRET) to GFP derivatives upon association. We could easily monitor assemblies by FRET states and particle sizes and have confirmed a stable presence in the buffer for at least a month. Further tracking of nanocapsules by fluorescence confirmed efficient uptake into some cancer cells. Nanocapsules based on GFP variants with or without a cell-surface-specific tag demonstrated that the tag improved the potential for specific targeted delivery. There were also indications that the nanocapsules became unstable after cellular uptake in the intracellular environment. We report here the simple preparation of traceable, stable, and biocompatible self-assembled nanocapsules as the basis for a versatile drug delivery system.


Asunto(s)
Materiales Biocompatibles , Proteínas Fluorescentes Verdes , Ensayo de Materiales , Tamaño de la Partícula , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Nanocápsulas/química , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos , Dendrímeros/química , Estructura Molecular
13.
Colloids Surf B Biointerfaces ; 234: 113753, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241888

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by interrupted neurocognitive functions and impaired mental development presumably caused by the accumulation of amyloid beta (Aß) in the form of plaques. Targeting Aß has been considered a promising approach for treating AD. In the current study, human serum albumin (HSA), a natural Aß binder, is covalently immobilized onto the surface of a cellulose acetate (CA) membrane to devise an extracorporeal Aß sequester. The immobilization of HSA at 3.06 ± 0.22 µg/mm2 of the CA membrane was found to be active functionally, as evidenced by the esterase-like activity converting p-nitrophenyl acetate into p-nitrophenol. The green fluorescent protein-Aß (GFP-Aß) fusion protein, recombinantly produced as a model ligand, exhibited characteristics of native Aß. These features include the propensity to form aggregates or fibrils and an affinity for HSA with a dissociation constant (KD) of 0.91 µM. The HSA on the CA membrane showed concentration-dependent sequestration of GFP-Aß in the 1-10-µM range. Moreover, it had a greater binding capacity than HSA immobilized on a commercial amine-binding plate. Results suggest that the covalent immobilization of HSA on the CA surface can be used as a potential platform for sequestering Aß to alleviate AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Celulosa/análogos & derivados , Humanos , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Albúmina Sérica Humana/química
14.
Int J Med Sci ; 10(10): 1321-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23983592

RESUMEN

BACKGROUND: Bone marrow-derived cells (BMCs) have abilities of cell migration and differentiation into tissues/organs in the body and related with the differentiation of teeth or periodontal tissue including fibroblasts. Then, we examined the effect of orthodontic mechanical stress to the transplanted BMC migration into periodontal tissues using BMC transplantation model. MATERIAL AND METHOD: BMC from green fluorescence protein (GFP) transgenic mice were transplanted into 8-week-old female C57BL/6 immunocompromised recipient mice, which had undergone 10 Gy of lethal whole-body-irradiation. Five mice as experimental group were received orthodontic mechanical stress using separator between first molar (M1) and second molar (M2) 1 time per week for 5 weeks and 5 mice as control group were not received mechanical stress. The maxilla with M1 and M2 was removed and was immunohistochemically analyzed using a Dako Envision + Kit-K4006 and a primary anti-GFP-polyclonal rabbit antibody. Immunohistochemically stained was defined as positive area and the pixel number of positive area in the periodontal tissue was compared with the previously calculated total pixel number of the periodontal tissue. RESULTS: The immunohistochemistry revealed that GFP positive cells were detected in the periodontal tissues, both in the experimental and control specimens. The ratio of pixel number in the examination group showed 5.77 ± 3.24 % (mean ± SD); and that in the control group, 0.71 ± 0.45 % (mean ± SD). The examination group was significantly greater than that of control group (Mann-Whitney U test: p<0.001). CONCLUSION: These results suggest that orthodontic mechanical stress accelerates transplanted BMC migration into periodontal tissues.


Asunto(s)
Movimiento Celular/fisiología , Periodoncio/citología , Estrés Mecánico , Animales , Trasplante de Médula Ósea , Femenino , Inmunohistoquímica , Ratones , Ratones Transgénicos , Periodoncio/fisiología
15.
Methods Appl Fluoresc ; 10(4)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35952674

RESUMEN

Encapsulation of enhanced green fluorescent protein (EGFP) in complex coacervate core micelles (C3Ms) can be established by mixing EGFP with diblock polymers at equal charge ratio. It has previously been shown that this encapsulation system is highly dynamic, implying existence of different populations; GFP free in solution or complexed with polymers (small complexes) and EGFP encapsulated in C3Ms. We performed time resolved fluorescence anisotropy experiments to determine the relative populations of EGFP encapsulated in C3Ms using three different fluorescence anisotropy decay analysis methods. First, Maximum Entropy Method (MEM) data analysis was employed for five different EGFP concentrations in C3Ms that were mixed with dark fluorescent proteins (10, 20, 30, 40 and 50% EGFP, respectively). In all cases, correlation-time distributions between 0.1 and 100 ns (on a logarithmic timescale) are clearly visible showing bimodal distribution. The distribution between 0.1 and 2.0 ns is due to homo-FRET between EGFP molecules packed in micelles and the distribution between 8 and 30 ns coincides with the correlation-time distribution of free EGFP in solution. The fraction of homo-FRET distribution linearly increases with increase of relative micellar EGFP concentrations. These MEM results were corroborated by two different analysis methods: global population analysis of all five fluorescence anisotropy decays arising from EGFP in micelles together with the one of free EGFP (direct analysis of anisotropies) and global associative population analysis of anisotropies by fitting parallel and perpendicular fluorescence decay components. In contrast to global analyses approaches, the MEM method directly reveals distributions of correlation times without any prior information about the sample. However, global associative analysis of anisotropies by fitting parallel and perpendicular fluorescence decay components is the only method that allows to estimate accurately fractions of free fluorophores in solution and encapsulated fluorophores.


Asunto(s)
Micelas , Polímeros , Polarización de Fluorescencia , Proteínas Fluorescentes Verdes
16.
Regen Ther ; 21: 460-468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36313391

RESUMEN

Introduction: The role of osteopontin (OPN) following severe injury remains to be elucidated, especially its relationship with type I collagen (encoded by the Col1a1 gene) secretion by newly-differentiated odontoblast-like cells (OBLCs). In this study, we examined the role of OPN in the process of reparative dentin formation with a focus on reinnervation and revascularization after tooth replantation in Opn knockout (KO) and wild-type (WT) mice. Methods: Maxillary first molars of 2- and 3-week-old-Opn KO and WT mice (Opn KO 2W, Opn KO 3W, WT 2W, and WT 3W groups) were replanted, followed by fixation 3-56 days after operation. Following micro-computed tomography analysis, the decalcified samples were processed for immunohistochemistry for Ki67, Nestin, PGP 9.5, and CD31 and in situ hybridization for Col1a1. Results: An intense inflammatory reaction occurred to disrupt pulpal healing in the replanted teeth of the Opn KO 3W group, whereas dental pulp achieved healing in the Opn KO 2W and WT groups. The tertiary dentin in the Opn KO 3W group was significantly decreased in area compared with the Opn KO 2W and WT groups, with a significantly low percentage of Nestin-positive, newly-differentiated OBLCs during postoperative days 7-14. In the Opn KO 3W group, the blood vessels were significantly decreased in area and pulp healing was disturbed with a failure of pulpal revascularization and reinnervation. Conclusions: OPN is necessary for proper reinnervation and revascularization to deposit reparative dentin following severe injury within the dental pulp of erupted teeth with advanced root development.

17.
ACS Appl Bio Mater ; 4(9): 7111-7122, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35006943

RESUMEN

Although a plethora of gene carriers have been developed for potential gene therapy, imageable stimuli-responsive gene vectors with fast access to the nucleus, high biocompatibility, and transfection efficiency are still scarce. Herein, we report the design and synthesis of four dendrite-shaped cationic liposomes, MPA-HBI-R/DOPE (R: n-butyl, 1; n-octyl, 2; n-dodecyl, 3; palmyl, 4), prepared via esterification of 4-alkoxybenzylideneimidazolinone containing aliphatic chains of different lengths (HBI-R), the green fluorescent protein (GFP) chromophore, with a di[12]aneN3 unit. Liposomes were fabricated via the self-assembly of MPA-HBI-R, assisted with 1,2-dioleoyl-sn-glycerol-3-phosphorylethanolamine (DOPE). These liposomes (MPA-HBI-R/DOPE) exhibited efficient DNA condensation, pH-responsive degradation, excellent cellular biocompatibility (up to 150 µM), and high transfection efficiency. Molecular docking experiments were also used to verify the optimal interaction between MPA-HBI-R and DNA, as well as the fluorescence enhancements. In particular, MPA-HBI-2/DOPE delivered DNA into the nucleus in less than an hour, and its luciferase transfection activity was more than 10 times that by Lipo2000, across multiple cell lines. The GFP chromophore conjugation allowed trackable intracellular delivery and release of DNA in real time via fluorescence imaging. Furthermore, efficient red fluorescent protein (RFP) transfection in zebrafish, with an efficiency of more than 6 times that by Lipo2000, was also achieved. The results not only realized, for the first time, the combination of gene delivery and GFP-simulated light emission, allowing fluorescent tracking and highly efficient gene transfection, but also offered valuable insights into the use of biomimetic chromophore for the development of the next-generation nonviral vectors.


Asunto(s)
Liposomas , Luminiscencia , Animales , ADN/genética , Proteínas Fluorescentes Verdes/genética , Simulación del Acoplamiento Molecular , Transfección , Pez Cebra/genética
18.
Chemosphere ; 258: 127148, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32535434

RESUMEN

Tetrahydrofuran (THF) is a common highly toxic cyclic aliphatic ether that frequently exists in waste gases. Removal of gaseous THF is a serious issue with important environmental ramifications. A novel three-phase airlift bioreactor (TPAB) loaded with immobilized cells was developed for efficient THF removal from gas streams. An effective THF-degrading transformant, Pseudomonas oleovorans GDT4, which contains the pTn-Mod-OTc-gfp plasmid and was tagged with a green fluorescent protein (GFP), was constructed. Continuous treatment of THF-containing waste gases was succeeded by the GFP-labelled cells immobilized with calcium alginate and activated carbon fiber in the TPAB for 60 days with >90% removal efficiency. The number of fluorescent cells in the beads reached 1.7 × 1011 cells·g-1 of bead on day 10, accounting for 83.3% of the total number of cells. The amount further increased to 3.0 × 1011 cells·g-1 of bead on day 40. However, it decreased to 2.5 × 1011 cells·g-1 of bead with a substantial increase in biomass in the liquid because of cell leakage and hydraulic shock. PCR-DGGE revealed that P. oleovorans was the dominant microorganism throughout the entire operation. The maximum elimination capacity was affected by empty bed residence time (EBRT). The capacity was only 25.9 g m-3·h-1 at EBRT of 80 s, whereas it reached 37.8 g m-3·h-1 at EBRT of 140 s. This work provides an alternative method for full-scale removal of gaseous THF and presents a useful tool for determining the biomass of a specific degrader in immobilized beads.


Asunto(s)
Reactores Biológicos/microbiología , Furanos/metabolismo , Pseudomonas oleovorans/metabolismo , Administración de Residuos/métodos , Alginatos/química , Biodegradación Ambiental , Biomasa , Fibra de Carbono , Células Inmovilizadas/metabolismo , Carbón Orgánico , Diseño de Equipo , Gases , Proteínas Fluorescentes Verdes/genética , Microbiota , Microorganismos Modificados Genéticamente , Pseudomonas oleovorans/citología , Pseudomonas oleovorans/genética , Administración de Residuos/instrumentación
19.
J Endod ; 46(3): 404-412, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31937463

RESUMEN

INTRODUCTION: The aim of this study was to analyze the contribution of bone marrow-derived cells (BMDCs) to reparative dentinogenesis using bone marrow transplantation (BMT) and pulp capping as an in vivo model. METHODS: A chimeric mouse model was created through the injection of BMDCs expressing green fluorescent protein (GFP+ BMDCs) from C57BL/6 GFP+ transgenic donor mice into irradiated C57BL/6 wild-type recipient mice (GFP- mice). These GFP- chimeric mice (containing transplanted GFP+ BMDCs) were subjected to microscopic pulp exposure and capping with white mineral trioxide aggregate (n = 18) or Biodentine (Septodont, St Maur-des-Fossés, France) (n = 18) in the maxillary first molar. Maxillary arches from GFP- chimeric mice (with the capped tooth) were isolated and histologically processed 5 (n = 9) and 7 (n = 9) weeks after BMT. Confocal laser microscopy and immunohistochemical analysis were performed to assess the presence of GFP+ BMDCs and the expression of dentin sialoprotein, an odontoblast marker, for those cells contributing to reparative dentinogenesis in the dental pulp. RESULTS: Confocal laser microscopic analyses evidenced the presence of GFP+ BMDCs in close association with reparative dentin synthesized at the site of pulp exposure in GFP- mice 5 and 7 weeks after BMT. Immunohistochemical analysis revealed that GFP+ BMDCs in close association with reparative dentin expressed DSP, suggesting the contribution of nonresident GFP+ BMDCs to reparative dentinogenesis. CONCLUSIONS: These data suggest the presence of nonresident BMDCs in reparative dentinogenesis and its contribution to dental pulp regeneration in the pulp healing process.


Asunto(s)
Trasplante de Médula Ósea , Dentinogénesis , Animales , Médula Ósea , Células de la Médula Ósea , Pulpa Dental , Francia , Ratones , Ratones Endogámicos C57BL
20.
Int J Nanomedicine ; 14: 1119-1130, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863049

RESUMEN

BACKGROUND: Protein or peptide drugs are emerging therapeutics for treating human diseases. However, current protein drugs are typically limited to acting on extracellular/cell membrane components associated with the diseases, while intracellular delivery of recombinant proteins replaces or replenishes faulty/missing proteins and remains inadequate. In this study, we developed a convenient and efficient intracellular protein delivery vehicle. MATERIALS AND METHODS: A cationic liposomal polyethylenimine and polyethylene glycol complex (LPPC) was developed to noncovalently capture proteins for protein transfer into cells via endocytosis. ß-glucuronidase (ßG) was used in vitro and in vivo as a model enzyme to demonstrate the enzymatic activity of the intracellular transport of a protein. RESULTS: The endocytosed protein/LPPC complexes escaped from lysosomes, and the bound protein dissociated from LPPC in the cytosol. The enzymatic activity of ßG was well preserved after intracellular delivery in vitro and in vivo. CONCLUSION: Using LPPC as an intracellular protein transporter for protein therapeutics, we illustrated that LPPC may be an effective and convenient tool for studying diseases and developing therapeutics.


Asunto(s)
Espacio Intracelular/química , Polietilenglicoles/química , Polietileneimina/análogos & derivados , Proteínas/uso terapéutico , Células 3T3 , Adsorción , Animales , Bovinos , Muerte Celular , Fluoresceína-5-Isotiocianato/química , Fluorescencia , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células Hep G2 , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Polietileneimina/química , Estabilidad Proteica , Albúmina Sérica Bovina/química , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA