Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(11): 105324, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37806494

RESUMEN

Wolf-Hirschhorn syndrome (WHS) is a developmental disorder attributed to a partial deletion on the short arm of chromosome 4. WHS patients suffer from oral manifestations including cleft lip and palate, hypodontia, and taurodontism. WHS candidate 1 (WHSC1) gene is a H3K36-specific methyltransferase that is deleted in every reported case of WHS. Mutation in this gene also results in tooth anomalies in patients. However, the correlation between genetic abnormalities and the tooth anomalies has remained controversial. In our study, we aimed to clarify the role of WHSC1 in tooth development. We profiled the Whsc1 expression pattern during mouse incisor and molar development by immunofluorescence staining and found Whsc1 expression is reduced as tooth development proceeds. Using real-time quantitative reverse transcription PCR, Western blot, chromatin immunoprecipitation, and luciferase assays, we determined that Whsc1 and Pitx2, the initial transcription factor involved in tooth development, positively and reciprocally regulate each other through their gene promoters. miRNAs are known to regulate gene expression posttranscriptionally during development. We previously reported miR-23a/b and miR-24-1/2 were highly expressed in the mature tooth germ. Interestingly, we demonstrate here that these two miRs directly target Whsc1 and repress its expression. Additionally, this miR cluster is also negatively regulated by Pitx2. We show the expression of these two miRs and Whsc1 are inversely correlated during mouse mandibular development. Taken together, our results provide new insights into the potential role of Whsc1 in regulating tooth development and a possible molecular mechanism underlying the dental defects in WHS.


Asunto(s)
Labio Leporino , Fisura del Paladar , MicroARNs , Síndrome de Wolf-Hirschhorn , Animales , Ratones , MicroARNs/genética , Factores de Transcripción , Síndrome de Wolf-Hirschhorn/genética , Síndrome de Wolf-Hirschhorn/metabolismo , Proteína del Homeodomínio PITX2
2.
Plant Biotechnol J ; 22(2): 330-346, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37795899

RESUMEN

Grass lignocelluloses feature complex compositions and structures. In addition to the presence of conventional lignin units from monolignols, acylated monolignols and flavonoid tricin also incorporate into lignin polymer; moreover, hydroxycinnamates, particularly ferulate, cross-link arabinoxylan chains with each other and/or with lignin polymers. These structural complexities make grass lignocellulosics difficult to optimize for effective agro-industrial applications. In the present study, we assess the applications of two engineered monolignol 4-O-methyltransferases (MOMTs) in modifying rice lignocellulosic properties. Two MOMTs confer regiospecific para-methylation of monolignols but with different catalytic preferences. The expression of MOMTs in rice resulted in differential but drastic suppression of lignin deposition, showing more than 50% decrease in guaiacyl lignin and up to an 90% reduction in syringyl lignin in transgenic lines. Moreover, the levels of arabinoxylan-bound ferulate were reduced by up to 50%, and the levels of tricin in lignin fraction were also substantially reduced. Concomitantly, up to 11 µmol/g of the methanol-extractable 4-O-methylated ferulic acid and 5-7 µmol/g 4-O-methylated sinapic acid were accumulated in MOMT transgenic lines. Both MOMTs in vitro displayed discernible substrate promiscuity towards a range of phenolics in addition to the dominant substrate monolignols, which partially explains their broad effects on grass phenolic biosynthesis. The cell wall structural and compositional changes resulted in up to 30% increase in saccharification yield of the de-starched rice straw biomass after diluted acid-pretreatment. These results demonstrate an effective strategy to tailor complex grass cell walls to generate improved cellulosic feedstocks for the fermentable sugar-based production of biofuel and bio-chemicals.


Asunto(s)
Metiltransferasas , Oryza , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Flavonoides/metabolismo , Pared Celular/metabolismo
3.
J Exp Bot ; 75(6): 1671-1695, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38198655

RESUMEN

Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.


Asunto(s)
Melatonina , Estilbenos , Lignina , Filogenia , Metiltransferasas/genética , Metabolismo Secundario , Flavonoides , Proteínas de Plantas/genética
4.
Oral Dis ; 30(6): 3951-3961, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38297969

RESUMEN

OBJECTIVES: To explore the effect of protein arginine methyltransferase 5 (PRMT5) on tooth extraction sockets healing, we established an extraction sockets model in osteoblast-conditional Prmt5 knockout mice. The results provided clues for promoting extraction sockets healing in clinical settings. MATERIALS AND METHODS: Maxillary first molars were extracted from 6 to 8-week-old mice to establish an extraction fossa model. Microcomputed tomography (Micro-CT), histology, and immunostaining assays were performed on samples harvested at 3-, 7-, and 14-day post-extraction. Prmt5-silenced cell lines  were employed to explore the regulatory mechanisms underlying the osteigenic differentiation. RESULTS: PRMT5 expression was higher in the early stage of socket healing. Micro-CT analysis showed that the percentage of new bone in the extraction sockets was lower in OC-Cre; Prmt5fl/fl mice than in the control group, consistent with Masson staining. We found that, Prmt5 deficiency delayed the osteogenesis during extraction socket healing, which might be achieved through the decrease of H4R3me2s in the Sp7 promoter region. CONCLUSION: PRMT5 in osteoblasts may promote the differentiation of osteoblasts by regulating the Sp7 promoter H4R3me2s and participate in the healing of tooth extraction sockets.


Asunto(s)
Diferenciación Celular , Ratones Noqueados , Osteoblastos , Osteogénesis , Proteína-Arginina N-Metiltransferasas , Extracción Dental , Alveolo Dental , Cicatrización de Heridas , Microtomografía por Rayos X , Animales , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Ratones , Factor de Transcripción Sp7/metabolismo , Factor de Transcripción Sp7/genética , Regiones Promotoras Genéticas , Diente Molar
5.
Amino Acids ; 55(10): 1293-1304, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36565339

RESUMEN

Caffeic acid-O-methyltransferase (COMT), an important enzyme governing the process of lignification in plants, functions at the level of caffeic acid methylation along with 3-O-methylation of monolignol precursors. The present investigation was carried out to decipher the role of COMT in tall fescue lignification and to clone and characterize the COMT gene. The study on COMT activity variation at different growth stages of tall fescue exhibited a significant increase in activity over all the growth stages of tall fescue. A significant relative increase of 47.8% was observed from the first vegetative to reproductive stage. COMT activity exhibited a strong positive correlation with lignin content suggesting it to be an important enzyme of tall fescue lignification. Amplification and sequencing of tall fescue COMT gene resulted in an amplicon of size 1662 (Accession No.-MW442832) and an ORF of 346 amino acids. The deduced protein was hydrophobic, thermally stable and acidic with molecular formula C1679H2623N445O482S20, molecular mass 37.4 kDa and theoretical pI of 6.12. The protein possesses a conserved dimerization domain with a highly conserved SAM binding site. The COMT protein was found to be a homo-dimer with 1 catalytic SAH/SAM ligand per monomer interacting with 14 amino acid residues within 4 Å region.


Asunto(s)
Lignina , Metiltransferasas , Lignina/genética , Lignina/metabolismo , Metiltransferasas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Metilación , Plantas/metabolismo , Ácidos Cafeicos
6.
Gen Comp Endocrinol ; 331: 114176, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410448

RESUMEN

Methyl farnesoate (MF), a crustacean equivalent of juvenile hormone (JH) of insects, is known to be produced from the mandibular organ (MO). This study reports transcriptome analysis of Penaeus monodon MO and identifies putative genes encoding enzymes in the sesquiterpenoid pathway. A total of 44,490,420 clean reads were obtained and utilized for subsequent analysis. De novo assembly created 31,201 transcripts and 31,167 unigenes. To archive the functional annotation, all unigenes were annotated with KOG, KEGG, and GO. Putative genes encoding enzymes and regulatory proteins involved in the sesquiterpenoid pathway were obtained from the MO transcriptome data based on the conserved domains and sequence homology. They included S-adenosylmethionine synthetase, farnesyl pyrophosphate synthase, short chain dependent dehydrogenase/reductase (SDR), NAD(P) + -dependent aldehyde dehydrogenase, S-adenosylmethionine-dependent methyltransferases or juvenile hormone acid-O-methyl transferase (JHAMT), farnesoic acid O-methyl transferase (FAMeT), juvenile hormone binding protein, cytochrome C/P-450 family 15 (CRYP15A1)/methylfarnesoate epoxidase (MFE), juvenile hormone epoxide hydrolase (JHEH), and juvenile hormone esterase (JHE). We first identified and characterized JHAMT orthologs inP. monodon(PmJHAMT). The complete cDNA sequence ofPmJHAMTconsisted of 1,221 nt encoded 271 amino acids with a conserved S-adenosyl methionine (SAM) binding domain. Phylogenetic analysis clusteredPmJHAMTinto the group JHAMT with the same clade of the crabPortunus trituberculausJHAMT. Moreover, the predicted three-dimensional structure of PmJHAMT showed remarkable similarity with the recent crystal structure ofthe Bombyx moriJHAMT homodimer. RT-PCR analysis revealed that PmJHAMT was exclusively expressed in MO and initially expressed at stage 3 postlarvae. In situ hybridization with a specific probe to PmJHAMT validated the specific expression of this gene in MO cells. Finally, we evaluated the regulation of MO by eyestalk inhibitory peptides. Diminishing MO inhibitory hormone through unilateral eyestalk ablation resulted in a significantly higher expression ofPmJHAMTin MO by quantitative PCR. This result indicated that the eyestalk inhibitory hormone inhibited MF synthesis byPmJHAMTgene suppression in the MO. This finding provides insight into the crustacean sesquiterpenoid pathway and improves our understanding of crustacean endocrinology.


Asunto(s)
Penaeidae , Sesquiterpenos , Animales , Penaeidae/metabolismo , Filogenia , S-Adenosilmetionina , Hormonas Juveniles/metabolismo , Metiltransferasas/metabolismo , Clonación Molecular
7.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239975

RESUMEN

Within regenerative endodontics, exciting opportunities exist for the development of next-generation targeted biomaterials that harness epigenetic machinery, including microRNAs (miRNAs), histone acetylation, and DNA methylation, which are used to control pulpitis and to stimulate repair. Although histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) induce mineralisation in dental pulp cell (DPC) populations, their interaction with miRNAs during DPC mineralisation is not known. Here, small RNA sequencing and bioinformatic analysis were used to establish a miRNA expression profile for mineralising DPCs in culture. Additionally, the effects of a HDACi, suberoylanilide hydroxamic acid (SAHA), and a DNMTi, 5-aza-2'-deoxycytidine (5-AZA-CdR), on miRNA expression, as well as DPC mineralisation and proliferation, were analysed. Both inhibitors increased mineralisation. However, they reduced cell growth. Epigenetically-enhanced mineralisation was accompanied by widespread changes in miRNA expression. Bioinformatic analysis identified many differentially expressed mature miRNAs that were suggested to have roles in mineralisation and stem cell differentiation, including regulation of the Wnt and MAPK pathways. Selected candidate miRNAs were demonstrated by qRT-PCR to be differentially regulated at various time points in mineralising DPC cultures treated with SAHA or 5-AZA-CdR. These data validated the RNA sequencing analysis and highlighted an increased and dynamic interaction between miRNA and epigenetic modifiers during the DPC reparative processes.


Asunto(s)
MicroARNs , MicroARNs/genética , Pulpa Dental , Vorinostat , Inhibidores de Histona Desacetilasas/farmacología , Azacitidina/farmacología , Decitabina/farmacología , Ácidos Hidroxámicos/farmacología
8.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108549

RESUMEN

The Dental Pulp of permanent human teeth is home to stem cells with remarkable multilineage differentiation ability: human Dental Pulp Stem Cells (DPSCs). These cells display a very notorious expression of pluripotency core factors, and the ability to give rise to mature cell lineages belonging to the three embryonic layers. For these reasons, several researchers in the field have long considered human DPSCs as pluripotent-like cells. Notably, some signaling pathways such as Notch and Wnt contribute to maintaining the stemness of these cells through a complex network involving metabolic and epigenetic regulatory mechanisms. The use of recombinant proteins and selective pharmacological modulators of Notch and Wnt pathways, together with serum-free media and appropriate scaffolds that allow the maintenance of the non-differentiated state of hDPSC cultures could be an interesting approach to optimize the potency of these stem cells, without a need for genetic modification. In this review, we describe and integrate findings that shed light on the mechanisms responsible for stemness maintenance of hDPSCs, and how these are regulated by Notch/Wnt activation, drawing some interesting parallelisms with pluripotent stem cells. We summarize previous work on the stem cell field that includes interactions between epigenetics, metabolic regulations, and pluripotency core factor expression in hDPSCs and other stem cell types.


Asunto(s)
Células Madre Pluripotentes , Vía de Señalización Wnt , Humanos , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Epigénesis Genética , Pulpa Dental
9.
New Phytol ; 234(4): 1294-1314, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246985

RESUMEN

Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.


Asunto(s)
Sequías , Malus , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Lignina , Malus/genética , Estrés Oxidativo , Fitomejoramiento , Estabilidad del ARN , Estrés Fisiológico/genética , Espectrometría de Masas en Tándem , Transcriptoma/genética
10.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012717

RESUMEN

The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.


Asunto(s)
Braquiuros , Ácidos Grasos Insaturados , Animales , Braquiuros/genética , Braquiuros/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Metionina/metabolismo , Filogenia
11.
New Phytol ; 229(5): 2780-2794, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33124063

RESUMEN

Lignin is a key target for modifying lignocellulosic biomass for efficient biofuel production. Brown midrib 12 (bmr12) encodes the sorghum caffeic acid O-methyltransferase (COMT) and is one of the key enzymes in monolignol biosynthesis. Loss of function mutations in COMT reduces syringyl (S) lignin subunits and improves biofuel conversion rate. Although lignin plays an important role in maintaining cell wall integrity of xylem vessels, physiological and molecular consequences due to loss of COMT on root growth and adaptation to water deficit remain unexplored. We addressed this gap by evaluating the root morphology, anatomy and transcriptome of bmr12 mutant. The mutant had reduced lateral root density (LRD) and altered root anatomy and response to water limitation. The wild-type exhibits similar phenotypes under water stress, suggesting that bmr12 may be in a water deficit responsive state even in well-watered conditions. bmr12 had increased transcript abundance of genes involved in (a)biotic stress response, gibberellic acid (GA) biosynthesis and signaling. We show that bmr12 is more sensitive to exogenous GA application and present evidence for the role of GA in regulating reduced LRD in bmr12. These findings elucidate the phenotypic and molecular consequences of COMT deficiency under optimal and water stress environments in grasses.


Asunto(s)
Metiltransferasas , Raíces de Plantas/crecimiento & desarrollo , Sorghum , Lignina , Metiltransferasas/genética , Sorghum/genética , Agua
12.
Insect Mol Biol ; 30(3): 277-286, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33427366

RESUMEN

Social insects are notable for having two female castes that exhibit extreme differences in their reproductive capacity. The molecular basis of these differences is largely unknown. Vitellogenin (Vg) is a powerful antioxidant and insulin-signalling regulator used in oocyte development. Here we investigate how Royal Jelly (the major food of honeybee queens) and queen mandibular pheromone (a major regulator of worker fertility), affect the longevity and reproductive status of honey bee workers, the expression of Vg, its receptor VgR and associated regulatory proteins. We find that Vg is expressed in the ovaries of workers and that workers fed a queen diet of Royal Jelly have increased Vg expression in the ovaries. Surprisingly, we find that expression of Vg is not associated with ovary activation in workers, suggesting that this gene has potentially acquired non-reproductive functions. Therefore, Vg expression in the ovaries of honeybee workers provides further support for the Ovarian Ground Plan Hypothesis, which argues that genes implicated in the regulation of reproduction have been co-opted to regulate behavioural differences between queens and workers.


Asunto(s)
Abejas/fisiología , Evolución Biológica , Expresión Génica , Proteínas de Insectos/genética , Rasgos de la Historia de Vida , Vitelogeninas/genética , Animales , Abejas/genética , Femenino , Proteínas de Insectos/metabolismo , Ovario/metabolismo , Reproducción/genética , Conducta Social , Vitelogeninas/metabolismo
13.
Oral Dis ; 27(5): 1268-1282, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32890413

RESUMEN

OBJECTIVE: This study aimed to investigate how mechanical force affects the proliferation of human periodontal ligament stem cells (hPDLSCs). METHODS: CCK-8 assays and staining of ki67 were performed to evaluate hPDLSCs proliferation. qRT-PCR, ELISA, or Western blot analysis were used to measure the expression levels of interleukin (IL)-6, miR-31 host gene (MIR31HG), DNA methyltransferase 1 (DNMT1), and DNA methyltransferase 3B (DNMT3B). Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays were conducted to determine whether MIR31HG was targeted by DNMT1 and DNMT3B. MassARRAY mass spectrometry was used to quantify DNA methylation levels of the MIR31HG promoter. RESULTS: Mechanical force inhibited hPDLSCs proliferation with the downregulation of MIR31HG and upregulation of IL-6, DNMT1 and DNMT3B. Knockdown of MIR31HG suppressed hPDLSCs proliferation, and knockdown of DNMT1 or DNMT3B reversed mechanical force-induced downregulation of MIR31HG. Dual-luciferase and ChIP assays revealed DNMT1 and DNMT3B bound MIR31HG promoter in the region 1,015 bp upstream of the transcriptional start site. Treatment with 5'-aca-2'-deoxycytidine downregulated DNA methylation level in MIR31HG gene promoter, while mechanical force promoted the methylation of MIR31HG gene promoter. CONCLUSIONS: These findings elucidated how mechanical force affects proliferation via MIR31HG in hPDLSCs, providing clues for possible MIR31HG-based orthodontic therapeutic approaches.


Asunto(s)
Metilación de ADN , Ligamento Periodontal , Proliferación Celular , Regulación hacia Abajo , Humanos , Regulación hacia Arriba
14.
Plant J ; 99(3): 506-520, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002459

RESUMEN

C-lignin is a linear polymer of caffeyl alcohol, found in the seed coats of several exotic plant species, with promising properties for generation of carbon fibers and high value chemicals. In the ornamental plant Cleome hassleriana, guaiacyl (G) lignin is deposited in the seed coat for the first 6-12 days after pollination, after which G-lignin deposition ceases and C-lignin accumulates, providing an excellent model system to study C-lignin biosynthesis. We performed RNA sequencing of seed coats harvested at 2-day intervals throughout development. Bioinformatic analysis identified a complete set of lignin biosynthesis genes for Cleome. Transcript analysis coupled with kinetic analysis of recombinant enzymes in Escherichia coli revealed that the switch to C-lignin formation was accompanied by down-regulation of transcripts encoding functional caffeoyl CoA- and caffeic acid 3-O-methyltransferases (CCoAOMT and COMT) and a form of cinnamyl alcohol dehydrogenase (ChCAD4) with preference for coniferaldehyde as substrate, and up-regulation of a form of CAD (ChCAD5) with preference for caffealdehyde. Based on these analyses, blockage of lignin monomer methylation by down-regulation of both O-methyltransferases (OMTs) and methionine synthase (for provision of C1 units) appears to be the major factor in diversion of flux to C-lignin in the Cleome seed coat, although the change in CAD specificity also contributes based on the reduction of C-lignin levels in transgenic Cleome with down-regulation of ChCAD5. Structure modeling and mutational analysis identified amino acid residues important for the preference of ChCAD5 for caffealdehyde.


Asunto(s)
Vías Biosintéticas/genética , Lignina/biosíntesis , Proteínas de Plantas/genética , Semillas/genética , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cinética , Lignina/química , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Conformación Proteica , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Especificidad por Sustrato
15.
Cell Biol Int ; 44(12): 2383-2394, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32808710

RESUMEN

Periodontitis is a chronic inflammatory disease that results in the destruction of periodontal soft tissue and the resorption of alveolar bone. Evidence indicates that in diabetic patients, hyperglycemia suppresses periodontal ligament stem cell (PDLSC) functions and leads to difficulties in periodontal repair. The present study aimed to explore the mechanisms by which high-glucose concentrations aggravate cell viability reduction in human CD146-positive PDLCs (CD146+ PDLCs) under tumor necrosis factor-alpha (TNF-alpha) induction. CD146+ PDLCs were isolated from periodontal ligament tissues and treated in the absence or presence of 10 ng/ml of TNF-alpha and 30 mM glucose. Cell viability was detected using Cell Counting Kit-8 assays and Luminescent Cell Viability Assays. Western blotting and real-time polymerase chain reaction were performed to determine tumor necrosis factor-alpha receptor-1 (TNFR-1) protein and messenger RNA expression. Bisulfite and MassArray methylation analyses were used to analyze the methylation status of the TNFR-1 gene. Our results indicated that cell viability was reduced after treatment with a combination of both high-glucose concentration and TNF-alpha. Treatment with 30 mM glucose suppressed DNA methyltransferase (DNMT) activities and DNMT1 protein expression, and this was accompanied by the upregulation of TNFR-1. Additionally, we found that the CpG island located within the TNFR-1 gene was hypomethylated under 30 mM glucose conditions. S-adenosylmethionine, an established methyl donor, reversed TNFR-1 upregulation and restored cell viability against high-glucose concentration and TNF-alpha. In conclusion, the present findings suggest that high-glucose-induced CpG island hypomethylation within the TNFR-1 gene plays an essential role in TNFR-1 upregulation, and this further enhances the cell viability reduction of CD146+ PDLCs caused by TNF-alpha.


Asunto(s)
Glucosa/metabolismo , Periodontitis/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Desmetilación , Humanos , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/metabolismo , Periodontitis/fisiopatología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Células Madre/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Plant Biotechnol J ; 17(3): 594-607, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30133138

RESUMEN

Caffeic acid O-methyltransferase (COMT), the lignin biosynthesis gene modified in many brown-midrib high-digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl-to-guaiacyl ratio was reduced by ~50%, the 5-hydroxyguaiacyl (5-OH-G) unit incorporated into lignin at 10--15-fold higher levels than normal, and the amount of p-coumaric acid ester-linked to cell walls was reduced by ~50%. No brown-midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown-midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.


Asunto(s)
Hordeum/metabolismo , Lignina/metabolismo , Metiltransferasas/metabolismo , Interferencia de ARN , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Hordeum/enzimología , Hordeum/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Biotechnol J ; 17(4): 836-845, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30267599

RESUMEN

Ferulate 5-hydroxylase (F5H) catalyses the hydroxylation of coniferyl alcohol and coniferaldehyde for the biosynthesis of syringyl (S) lignin in angiosperms. However, the coordinated effects of F5H with caffeic acid O-methyltransferase (COMT) on the metabolic flux towards S units are largely unknown. We concomitantly regulated F5H expression in COMT-down-regulated transgenic switchgrass (Panicum virgatum L.) lines and studied the coordination of F5H and COMT in lignin biosynthesis. Down-regulation of F5H in COMT-RNAi transgenic switchgrass plants further impeded S lignin biosynthesis and, consequently, increased guaiacyl (G) units and reduced 5-OH G units. Conversely, overexpression of F5H in COMT-RNAi transgenic plants reduced G units and increased 5-OH units, whereas the deficiency of S lignin biosynthesis was partially compensated or fully restored, depending on the extent of COMT down-regulation in switchgrass. Moreover, simultaneous regulation of F5H and COMT expression had different effects on cell wall digestibility of switchgrass without biomass loss. Our results indicate that up-regulation and down-regulation of F5H expression, respectively, have antagonistic and synergistic effects on the reduction in S lignin resulting from COMT suppression. The coordinated effects between lignin genes should be taken into account in future studies aimed at cell wall bioengineering.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Metiltransferasas/metabolismo , Panicum/enzimología , Biomasa , Pared Celular/metabolismo , Regulación hacia Abajo , Metiltransferasas/genética , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN
18.
Pharmacol Res ; 139: 50-61, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385365

RESUMEN

Annually, 48,000 people die from pancreatic ductal adenocarcinoma (PDAC), ranking it the fourth among cancer-related deaths in the United States. Currently, anti-cancer drugs are not effective against PDAC, and only extends survival by 3 months. Aberrant DNA methylation has been shown to play an important role during carcinogenesis in PDAC, with approximately 80% of tumor overexpressing the DNA methyltransferase 1 (DNMT1) protein. In the present study, we used DNMTs as a screening platform to find a new DNMT inhibitor, n-butylidenephthalide (n-BP), which is identified from a Chinese herbal drug. n-BP could inhibit DNMT1 expression in both dose-dependent and time-dependent manner. It also displays an effect in suppressing growth of PDAC cells and inducing cell cycle arrest at G0/G1 phase leading apoptosis. Growth suppression can be restored by the overexpression of DNMT1 in PDAC cells. Furthermore, we found n-BP-mediated DNMT1 suppression influenced the protein stability rather than changing the RNA expression. Through microarray studies, we found that the patched domain contained 4 (PTCHD4) is the potential downstream gene of DNMT1. Following silencing of PTCHD4 expression by siRNA, n-BP decreased tumor growth inhibition. Finally, in vivo, two animal models were used to evaluate the efficacy and survival after n-BP treatment by interstitial control release polymer delivery. The results show that n-BP could effectively inhibit PDAC tumor volume growth and extend animal survival. In summary, n-BP may inhibit the growth of human PDAC cells though reducing DNMT1 and increasing the expression of PTCHD4 both in vitro and in vivo.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Metilasas de Modificación del ADN/antagonistas & inhibidores , Proteínas Hedgehog/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Anhídridos Ftálicos/farmacología , Anhídridos Ftálicos/uso terapéutico , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Epigénesis Genética , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Polímeros/farmacología , Polímeros/uso terapéutico , ARN Interferente Pequeño/genética , Proteínas Represoras/genética
19.
Biochem Biophys Res Commun ; 482(4): 883-888, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27890611

RESUMEN

The histone methyltransferase Setdb1 represses gene expression by catalyzing lysine 9 of histone H3 trimethylation. Given that the conventional knockout of Setdb1 is embryo-lethal at the implantation stage, its role in craniofacial development is poorly understood. Here, we investigated the role of Setdb1, using conditional knockout mice-in which Setdb1 was deleted in the Meckel's cartilage (Setdb1 CKO)-and the mouse chondrogenic cell line ATDC5-in which Setdb1 was inhibited by siRNA. Deletion of Setdb1 in Meckel's cartilage, the supportive tissue in the embryonic mandible, led to its enlargement, instead of the degeneration that normally occurs. Chondrocytes from the Meckel's cartilage of Setdb1 CKO mice showed increased size. Furthermore, at embryonic days 16.5 and 18.5, part of the perichondrium was disrupted and mineralization was observed in the Meckel's cartilage. Proliferation analysis showed that inhibition of Setdb1 caused increased proliferation in chondrocytes in the Meckel's cartilage as well as in ATDC5 cells. Quantitative RT-PCR showed decreased expression of chondrogenic genes, such as Sox9, Mmp13, Collagen II, and Aggrecan, as a result of Setdb1 inhibition in ATDC5 cells. Along with these phenomenons, SMAD-dependent BMP signaling was significantly increased by the loss of Setdb1 in both the Meckel's cartilage of Setdb1 CKO mice and ATDC5 cells. Therefore, the abnormal development of Meckel's cartilage in Setdb1 CKO mice is partly due to the enhanced SMAD-dependent BMP signaling. Overall, to our knowledge, the present study is the first to show that epigenetic regulation by Setdb1 is indispensable for the embryonic development of Meckel's cartilage.


Asunto(s)
Cartílago/embriología , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina/genética , Mandíbula/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/metabolismo , Cartílago/ultraestructura , Línea Celular , Proliferación Celular , Tamaño de la Célula , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/ultraestructura , Condrogénesis , N-Metiltransferasa de Histona-Lisina/metabolismo , Mandíbula/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal , Proteínas Smad/metabolismo
20.
J Biol Chem ; 290(44): 26715-24, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26378240

RESUMEN

Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.


Asunto(s)
Lignina/química , Metiltransferasas/química , Fenoles/química , Proteínas de Plantas/química , Populus/genética , Sustitución de Aminoácidos , Pared Celular/química , Pared Celular/enzimología , Pared Celular/genética , Clonación Molecular , Ácidos Cumáricos , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Biblioteca de Genes , Lignina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Fenoles/metabolismo , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Populus/química , Populus/enzimología , Propionatos/química , Propionatos/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA