Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 497(7449): 353-6, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23657254

RESUMEN

Molten oxide electrolysis (MOE) is an electrometallurgical technique that enables the direct production of metal in the liquid state from oxide feedstock, and compared with traditional methods of extractive metallurgy offers both a substantial simplification of the process and a significant reduction in energy consumption. MOE is also considered a promising route for mitigation of CO2 emissions in steelmaking, production of metals free of carbon, and generation of oxygen for extra-terrestrial exploration. Until now, MOE has been demonstrated using anode materials that are consumable (graphite for use with ferro-alloys and titanium) or unaffordable for terrestrial applications (iridium for use with iron). To enable metal production without process carbon, MOE requires an anode material that resists depletion while sustaining oxygen evolution. The challenges for iron production are threefold. First, the process temperature is in excess of 1,538 degrees Celsius (ref. 10). Second, under anodic polarization most metals inevitably corrode in such conditions. Third, iron oxide undergoes spontaneous reduction on contact with most refractory metals and even carbon. Here we show that anodes comprising chromium-based alloys exhibit limited consumption during iron extraction and oxygen evolution by MOE. The anode stability is due to the formation of an electronically conductive solid solution of chromium(iii) and aluminium oxides in the corundum structure. These findings make practicable larger-scale evaluation of MOE for the production of steel, and potentially provide a key material component enabling mitigation of greenhouse-gas emissions while producing metal of superior metallurgical quality.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Electrólisis/instrumentación , Óxidos/química , Oxígeno/química , Acero/química , Aleaciones/química , Aluminio/química , Cromo/química , Electrodos , Electrólitos/química , Grafito/química , Efecto Invernadero/prevención & control , Hierro/química , Metales/química , Acero/provisión & distribución , Temperatura
2.
Environ Sci Technol ; 46(1): 148-54, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22091699

RESUMEN

As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.


Asunto(s)
Comercio/economía , Acero/provisión & distribución , China , Hierro/economía , Acero/economía
3.
Environ Sci Technol ; 44(16): 6457-63, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20704247

RESUMEN

We present a comprehensive analysis of steel use in the future compiled using dynamic material flow analysis (MFA). A dynamic MFA for 42 countries depicted the global in-use stock and flow up to the end of 2005. On the basis of the transition of steel stock for 2005, the growth of future steel stock was then estimated considering the economic growth for every country. Future steel demand was estimated using dynamic analysis under the new concept of "stocks drive flows". The significant results follow. World steel stock reached 12.7 billion t in 2005, and has doubled in the last 25 years. The world stock in 2005 mainly consisted of construction (60%) and vehicles (10%). Stock in these end uses will reach 55 billion t in 2050, driven by a 10-fold increase in Asia. Steel demand will reach 1.8 billion t in 2025, then slightly decrease, and rise again by replacement of buildings. The forecast of demand clearly represents the industrial shift; at first the increase is dominated by construction, and then, after 2025, demand for construction decreases and demand for vehicles increases instead. This study thus provides the dynamic mechanism of steel stock and flow toward the future, which contributes to the design of sustainable steel use.


Asunto(s)
Internacionalidad , Acero/provisión & distribución , Geografía
4.
Healthc Foodserv ; 6(1): 18-9, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-10157569

RESUMEN

This is the second in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the basic methods of recycling steel cans, and includes information on conducting a waste audit and negotiating with a hauler regarding the benefits of recycling. The previous article discussed how steel is recycled across the country. The next article will convey a case history of actual foodservice recycling practice from a healthcare facility.


Asunto(s)
Conservación de los Recursos Naturales , Servicio de Alimentación en Hospital , Auditoría Administrativa , Acero/provisión & distribución , Embalaje de Alimentos , Estados Unidos
5.
Healthc Foodserv ; 5(4): 11, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-10152490

RESUMEN

This is the first in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the benefits of recycling and how steel is recycled across the country; the second will focus on the basic methods of recycling steel cans, and will include information on conducting a waste audit and negotiating with a hauler; the final article will convey a case history of actual foodservice recycling practice from a healthcare facility.


Asunto(s)
Conservación de los Recursos Naturales/economía , Manipulación de Alimentos/métodos , Servicios de Alimentación/organización & administración , Eliminación de Residuos/métodos , Acero/provisión & distribución , Conservación de los Recursos Naturales/tendencias , Ahorro de Costo , Manipulación de Alimentos/economía , Manipulación de Alimentos/normas , Embalaje de Alimentos/economía , Embalaje de Alimentos/métodos , Servicios de Alimentación/economía , Servicios de Alimentación/tendencias , Instituciones de Salud/economía , Administración de Instituciones de Salud , Eliminación de Residuos/economía , Eliminación de Residuos/normas , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA