Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Pharm ; 572: 118733, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689481

RESUMEN

Brain delivery of drugs by nanoparticles is a promising strategy that could open up new possibilities for the chemotherapy of brain tumors. As demonstrated in previous studies, the loading of doxorubicin in poly(lactide-co-glycolide) nanoparticles coated with poloxamer 188 (Dox-PLGA) enabled the brain delivery of this cytostatic that normally cannot penetrate across the blood-brain barrier in free form. The Dox-PLGA nanoparticles produced a very considerable anti-tumor effect against the intracranial 101.8 glioblastoma in rats, thus representing a promising candidate for the chemotherapy of brain tumors that warrants clinical evaluation. The objective of the present study, therefore, was the optimization of the Dox-PLGA formulation and the development of a pilot scale manufacturing process. Optimization of the preparation procedure involved the alteration of the technological parameters such as replacement of the particle stabilizer PVA 30-70 kDa with a presumably safer low molecular mass PVA 9-10 kDa as well as the modification of the external emulsion medium and the homogenization conditions. The optimized procedure enabled an increase of the encapsulation efficiency from 66% to >90% and reduction of the nanoparticle size from 250 nm to 110 nm thus enabling the sterilization by membrane filtration. The pilot scale process was characterized by an excellent reproducibility with very low inter-batch variations. The in vitro hematotoxicity of the nanoparticles was negligible at therapeutically relevant concentrations. The anti-tumor efficacy of the optimized formulation and the ability of the nanoparticles to penetrate into the intracranial tumor and normal brain tissue were confirmed by in vivo experiments.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Glioblastoma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/efectos de la radiación , Doxorrubicina/química , Doxorrubicina/efectos de la radiación , Desarrollo de Medicamentos , Estabilidad de Medicamentos , Masculino , Nanopartículas/química , Nanopartículas/efectos de la radiación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/efectos de la radiación , Ratas Wistar , Esterilización
2.
J Control Release ; 293: 94-103, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30448086

RESUMEN

Multifunctional drug delivery nanoplatform (PDPP3T@PSNiAA NPs) based on NIR absorbing semiconducting polymer nanoparticles for pH/NIR light-controllably regulated drug release has been successfully prepared. In this strategy, pH/thermal-sensitive multifunctional polymer polystyrene-b-poly(N-isopropylacrylamide-co-acrylic acid) (PSNiAA) was meticulously designed and synthesized using the reversible addition fragmentation chain transfer (RAFT) polymerization method. Furthermore, PSNiAA was used to functionalize diketopyrrolopyrrole-based semiconducting polymer (PDPP3T) to combine photothermal capacity and pH/thermo-responsive drug release in one entity. The prepared PDPP3T@PSNiAA NPs exhibited high photothermal conversion efficiency (η = 34.1%) and excellent photoacoustic (PA) brightness. Meanwhile, benefiting from the photothermal effect of PDPP3T and the pH/thermal-responsive properties of PSNiAA, Dox-loaded PDPP3T@PSNiAA NPs (PDPP3T@PSNiAA-Dox NPs) were able to controllably regulate the release of Dox by pH/NIR light, in which the enhanced drug release at acidic condition upon NIR irradiation phenomenon would minimize unnecessary drug release in normal tissues and was highly beneficial for precise synergistic chemo- and photothermal therapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Nanopartículas/administración & dosificación , Técnicas Fotoacústicas , Fotoquimioterapia , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/efectos de la radiación , Liberación de Fármacos , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Luz , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Nanopartículas/efectos de la radiación , Neoplasias/tratamiento farmacológico , Polímeros/administración & dosificación , Polímeros/química , Polímeros/efectos de la radiación
3.
Int J Pharm ; 557: 66-73, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30580088

RESUMEN

Graphene oxide (GO) owns huge surface area and high drug loading capacity for aromatic molecules, such as doxorubicin (DOX). However, its biocompatibility is poor and it might agglomerate in physiological conditions. Chemical modification of GO with hydrophilicpolymer, especially PEGylation, was a common method to improve its biocompatibility. But the chemical modification of GO was complicated, and its drug loading capacity might be reduced because of the occupation of its functional groups. In this study, DOX-PEG polymers with different PEG molecular weights were synthesized to modify nano graphene oxide (NGO) to simultaneously realize the solubilization of NGO and the high loading capacity of DOX. The result showed that the drug release of NGO@DOX-PEG was pH sensitive. NIR irradiation could augment the drug release, cellular uptake, cytotoxicity and nuclear translocation of nanodrugs. Among the three kinds of nanodrugs, NGO@DOX-PEG5K was superior to others. It suggested that after conjugating with PEG, the bond between DOX-PEG and NGO was weakened, which resulted in a better drug release and treatment effect. In summary, the NIR and pH dual-responsive NGO@DOX-PEG nanodrugs were developed by noncovalent modification, and it demonstrated excellent biocompatibility and photochemical therapeutic effect, presenting a promising candidate for antitumor therapy, especially NGO@DOX-PEG5K.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Grafito/administración & dosificación , Nanopartículas/administración & dosificación , Óxidos/administración & dosificación , Polietilenglicoles/administración & dosificación , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Doxorrubicina/química , Doxorrubicina/efectos de la radiación , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Liberación de Fármacos , Grafito/química , Grafito/efectos de la radiación , Células HeLa , Humanos , Luz , Nanopartículas/química , Nanopartículas/efectos de la radiación , Óxidos/química , Óxidos/efectos de la radiación , Fotoquimioterapia , Polietilenglicoles/química , Polietilenglicoles/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Solubilidad
4.
Int J Pharm ; 356(1-2): 325-32, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18295418

RESUMEN

Doxorubicin-loaded poly(butyl cyanoacrylate) (PBCA) nanoparticles were prepared by anionic polymerisation under non-aseptic conditions. The feasibility of sterilisation of this formulation using either gamma-irradiation or electron beam irradiation was investigated. The irradiation doses ranged from 10 to 35 kGy. Bacillus pumilus was used as the official test microorganism. The bioburden of the untreated formulation was found to be 100 CFU/g. Microbiological monitoring revealed that at this level of the bioburden the irradiation dose of 15 kGy was sufficient for sterilisation of the nanoparticles. The formulation showed excellent stability with both types of irradiation in the investigated dose range. The irradiation did not influence the physicochemical parameters of the drug-loaded and empty nanoparticles, such as the mean particle size, polydispersity, and aggregation stability. The molecular weights of the PBCA polymer as well as the polydispersity indices (M(w)/M(n)) remained nearly unchanged. The drug substance was stable to radiolysis. Additionally, the presence of irradiation-induced radicals was evaluated by ESR spectroscopy after storage of the particles at ambient temperature. The paramagnetic species found in the formulation were mainly produced by irradiation of mannitol and dextran used as excipients.


Asunto(s)
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Enbucrilato/química , Esterilización/métodos , Antibióticos Antineoplásicos/efectos de la radiación , Bacillus/efectos de la radiación , Recuento de Colonia Microbiana , Dextranos/química , Doxorrubicina/efectos de la radiación , Portadores de Fármacos/química , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Excipientes/química , Rayos gamma , Manitol/química , Nanopartículas , Tamaño de la Partícula , Dosis de Radiación
5.
Jpn J Antibiot ; 39(3): 815-22, 1986 Mar.
Artículo en Japonés | MEDLINE | ID: mdl-3016359

RESUMEN

SMANCS is a conjugate protein of copolymer of styrene-maleic acid [SMA] (molecular weight: 1,500) and an antitumor protein neocarzinostatin [NCS] (molecular weight: 11,700). It has an approximate molecular weight of 15,000. We report here stability of SMANCS in oil and in water, and NCS in water, under various physical conditions such as exposure to heat, UV, pH, and ultrasonic treatment. Then, we carried out an experiment of transfer of SMANCS in lipid contrast medium [lipiodol] (oil phase) to water phase (blood and physiological saline) in vitro. Results are summarized as follows: In aqueous condition, SMANCS is far more stable than NCS against the exposure to heat and UV, though it is inactivated by excessive exposures. SMANCS in an oily medium was found much more stable even at higher temperatures than in the aqueous phase. Both SMANCS and NCS are the most stable at pH 4.9-6.0. SMANCS dissolved in oil transferred to water phase slowly, having T1/10 of 24 hours (in case of lipiodol). This helps maintaining the anticancer effect of the drug in vivo for a long period of time. SMANCS in lipiodol was found to exert its action against cultured tumor cells as in an aqueous solution.


Asunto(s)
Antibióticos Antineoplásicos , Antineoplásicos , Furanos , Anhídridos Maleicos , Poliestirenos , Cinostatina , Antibióticos Antineoplásicos/efectos de la radiación , Antineoplásicos/efectos de la radiación , Sangre , Estabilidad de Medicamentos , Furanos/efectos de la radiación , Calor , Concentración de Iones de Hidrógeno , Aceite Yodado , Anhídridos Maleicos/efectos de la radiación , Poliestirenos/efectos de la radiación , Cloruro de Sodio , Soluciones , Ultrasonido , Rayos Ultravioleta , Agua , Cinostatina/análogos & derivados , Cinostatina/efectos de la radiación
6.
Ultrasound Med Biol ; 39(11): 2011-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23972488

RESUMEN

Localized drug delivery with ultrasound-induced hyperthermia can enhance the therapeutic index of chemotherapeutic drugs by improving efficacy and reducing systemic toxicity. A novel in vitro method for the activation of drug-loaded thermosensitive liposomes is described. In particular, a dual-compartment, acoustically transparent container is used in which thermosensitive liposomes suspended in cell culture medium are immersed in a thermally absorptive medium, glycerol. Hyperthermia is induced with ultrasound in the glycerol, which in turn heats the culture medium by thermal conduction. The method approximately mimics the in vivo scenario of thermosensitive liposomes collected in the interstitial spaces of tumors, where ultrasound induces hyperthermia in the tumor tissue, which in turn heats the thermosensitive liposomes by conduction and induces release of the encapsulated drug. The acoustic conditions for the desired hyperthermia are derived theoretically and validated experimentally. Eighty percent release of doxorubicin from thermosensitive liposomes is achieved.


Asunto(s)
Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/efectos de la radiación , Doxorrubicina/química , Doxorrubicina/efectos de la radiación , Liposomas/química , Liposomas/efectos de la radiación , Sonicación/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/efectos de la radiación , Simulación por Computador , Difusión/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Calefacción/métodos , Modelos Químicos , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA