Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Cell Biol ; 99(6): 766-771, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34559974

RESUMEN

Cell-free synthetic biology is a rapidly developing biotechnology with the potential to solve the world's biggest problems; however, this promise also has implications for global biosecurity and biosafety. Given the current situation of COVID-19 and its economic impact, capitalizing on the potential of cell-free synthetic biology from an economic, biosafety, and biosecurity perspective contributes to our preparedness for the next pandemic, and urges the development of appropriate policies and regulations, together with the necessary mitigation technologies. Proactive involvement from scientists is necessary to avoid misconceptions and assist in the policymaking process.


Asunto(s)
COVID-19/terapia , Biología Sintética/economía , Biología Sintética/legislación & jurisprudencia , Materiales Biocompatibles , Tecnología Biomédica , Bioaseguramiento , Biotecnología , Sistema Libre de Células , Difusión de Innovaciones , Política de Salud , Humanos , Seguridad , Biología Sintética/tendencias
2.
Appl Microbiol Biotechnol ; 103(13): 5143-5160, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31101942

RESUMEN

Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.


Asunto(s)
Microbiología Industrial/economía , Ingeniería Metabólica/economía , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas , Biología Sintética/economía , Xilitol/biosíntesis , Fermentación , Glucosa/metabolismo , Microbiología Industrial/métodos , Microbiología Industrial/tendencias , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alcoholes del Azúcar/metabolismo , Biología Sintética/métodos , Biología Sintética/tendencias , Xilosa/metabolismo
4.
Trends Biotechnol ; 31(5): 269-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23394960

RESUMEN

Opinions on what synthetic biology actually is range from a natural extension of genetic engineering to a new manufacturing paradigm. It offers, for the first time in the life sciences, rational design and engineering standardisation. It could address problems across a broad spectrum of human concerns, including energy and food security, and health of growing and aging populations. It also offers great scope for public resistance to its introduction to daily life.


Asunto(s)
Opinión Pública , Biología Sintética/economía , Biología Sintética/tendencias , Biopolímeros , Humanos , Organismos Modificados Genéticamente , Salud Pública
5.
Sheng Wu Gong Cheng Xue Bao ; 29(8): 1123-32, 2013 Aug.
Artículo en Zh | MEDLINE | ID: mdl-24364349

RESUMEN

The aim of synthetic biology is to design artificial life systems. Such system is hoped to create a better production process with desired ability for bioproduction, biotransformation, adaption and environmental monitoring. However, to design a life system involves understanding the cellular regulation networks at multiple levels, in which the controls of protein level, subcelluar location, and activity are especially critical. Thus tuning protein expression has become essential tools in synthetic biology studies, such as part design, module assembly and compatibility optimization. Protein budget, just like budget for a factory, can be thought as the cost estimating criteria for an artificial cell factory. Protein budget control has provided a powerful optimization strategy for synthetic biology.


Asunto(s)
Ingeniería de Proteínas , Proteínas/metabolismo , Proteínas Recombinantes/biosíntesis , Biología Sintética/economía , Células Artificiales/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Proteínas/economía , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA