Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 858
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2218247120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877851

RESUMEN

Needle-and-syringe-based delivery has been the commercial standard for vaccine administration to date. With worsening medical personnel availability, increasing biohazard waste production, and the possibility of cross-contamination, we explore the possibility of biolistic delivery as an alternate skin-based delivery route. Delicate formulations like liposomes are inherently unsuitable for this delivery model as they are fragile biomaterials incapable of withstanding shear stress and are exceedingly difficult to formulate as a lyophilized powder for room temperature storage. Here we have developed a approach to deliver liposomes into the skin biolistically-by encapsulating them in a nano-sized shell made of Zeolitic Imidazolate Framework-8 (ZIF-8). When encapsulated within a crystalline and rigid coating, the liposomes are not only protected from thermal stress, but also shear stress. This protection from stressors is crucial, especially for formulations with cargo encapsulated inside the lumen of the liposomes. Moreover, the coating provides the liposomes with a solid exterior that allows the particles to penetrate the skin effectively. In this work, we explored the mechanical protection ZIF-8 provides to liposomes as a preliminary investigation for using biolistic delivery as an alternative to syringe-and-needle-based delivery of vaccines. We demonstrated that liposomes with a variety of surface charges could be coated with ZIF-8 using the right conditions, and this coating can be just as easily removed-without causing any damage to the protected material. The protective coating prevented the liposomes from leaking cargo and helped in their effective penetration when delivered into the agarose tissue model and porcine skin tissue.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Animales , Porcinos , Liposomas , Biolística , Materiales Biocompatibles , Contaminación de Medicamentos
2.
Acc Chem Res ; 57(1): 93-105, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38105494

RESUMEN

Manufacturing is undergoing profound transformations, among which green biomanufacturing with low energy consumption, high efficiency, and sustainability is becoming one of the major trends. However, enzymes, as the "core chip" of biomanufacturing, are often handicapped in their application by their high cost, low operational stability, and nonreusability. Immobilization of enzymes is a technology that binds or restricts enzymes in a certain area with solid materials, allows them to still carry out their unique catalytic reaction, and allows them to be recycled and reused. Compared with free enzymes, immobilized enzymes boast numerous advantages such as enhanced storage stability, ease of separation, reusability, and controlled operation. Currently, commonly used supports for enzyme immobilization (e.g., mesoporous silica, sol-gel hydrogels, and porous polymer) can effectively improve enzyme stability and reduce product inhibition. However, they still face drawbacks such as potential leaching or conformational change during immobilization and poor machining performance. Especially, most enzyme carrier solid materials possess disordered structures, inevitably introducing deficiencies such as low loading capacity, hindered mass transfer, and unclear structure-property relationships. Additionally, it remains a notable challenge to meticulously design immobilization systems tailored to the specific characteristics of enzyme/reaction. Therefore, there is a significant demand for reliable solid materials to overcome the above challenges. Crystalline porous materials, particularly covalent organic frameworks (COFs), have garnered significant interest as a promising platform for immobilizing enzymes due to their unique properties, such as their crystalline nature, high porosity, accessible active sites, versatile synthetic conditions, and tunable structure. COFs create a stabilizing microenvironment that protects enzymes from denaturation and significantly enhances reusability. Nevertheless, some challenges still remain, including difficulties in loading large enzymes, reduced enzyme activities, and the limited functionality of carriers. Therefore, it is essential to develop innovative carriers and novel strategies to broaden the methods of immobilizing enzymes, enabling their application across a more diverse array of fields.The integration of enzymes with advanced porous materials for intensified performance and diverse applications is still in its infancy, and our group has done a series of pioneering works. This Account presents a comprehensive overview of recent research progress made by our group, including (i) the development of innovative enzyme immobilization strategies utilizing COFs to make the assembly and integration of enzymes and carriers more effective; (ii) rational design and construction of functional carriers for enzyme immobilization using COFs; and (iii) extensions of immobilized enzyme applications based on COFs from industrial catalysis to biomedicine and chiral separation. The integration of enzymes with functional crystalline materials offers mutual benefits and results in a performance that surpasses what either component can achieve individually. Additionally, immobilized enzymes exhibit enhanced functionality and intriguing characteristics that differ from those of free enzymes. Consistent with our research philosophy centered on integration, platform development, and engineering application, this Account addresses the critical challenges associated with enzyme immobilization using COFs while extending the applications of COFs and proposing future design principles for biomanufacturing and enzyme industry.


Asunto(s)
Estructuras Metalorgánicas , Enzimas Inmovilizadas , Polímeros , Catálisis , Ingeniería
3.
Nano Lett ; 24(20): 5993-6001, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655913

RESUMEN

Bimetallic hollow structures have attracted much attention due to their unique properties, but they still face the problems of nonuniform alloys and excessive etching leading to structural collapse. Here, uniform bimetallic hollow nanospheres are constructed by pore engineering and then highly loaded with hemin (Hemin@MOF). Interestingly, in the presence of polydopamine (PDA), the competitive coordination between anionic polymer (γ-PGA) and dimethylimidazole does not lead to the collapse of the external framework but self-assembly into a hollow structure. By constructing the Hemin@MOF immune platform and using E. coli O157:H7 as the detection object, we find that the visual detection limits can reach 10, 3, and 3 CFU/mL in colorimetric, photothermal, and catalytic modes, which is 4 orders of magnitude lower than the traditional gold standard. This study provides a new idea for the morphological modification of the metal-organic skeleton and multifunctional immunochromatography detection.


Asunto(s)
Hemina , Indoles , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Hemina/química , Indoles/química , Polímeros/química , Escherichia coli O157 , Estructuras Metalorgánicas/química , Nanosferas/química , Límite de Detección
4.
Anal Chem ; 96(29): 11800-11808, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38990771

RESUMEN

Organic Raman probes, including polymers and small molecules, have attracted great attention in biomedical imaging owing to their excellent biocompatibility. However, the development of organic Raman probes is usually hindered by a mismatch between their absorption spectra and wavelength-fixed excitation, which makes it difficult to achieve resonance excitation necessary to obtain strong Raman signals. Herein, we introduce a covalent organic framework (COF) into the fine absorption spectrum regulation of organic Raman probes, resulting in their significant Raman signal enhancement. In representative examples, a polymer poly(diketopyrrolopyrrole-p-phenylenediamine) (DPP-PD) and a small molecule azobenzene are transformed into the corresponding COF-structured Raman probes. Their absorption peaks show an accurate match of less than 5 nm with the NIR excitation. As such, the COF-structured Raman probes acquire highly sensitive bioimaging capabilities compared to their precursors with negligible signals. By further mechanism studies, we discover that the crystallinity and size of COFs directly affect the π-conjugation degree of Raman probes, thus changing their bandgaps and absorption spectra. Our study offers a universal and flexible method for improving the signal performance of organic Raman probes without changing their structural units, making it more convenient to obtain the highly sensitive organic Raman probes for in vivo bioimaging.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Animales , Humanos , Ratones , Compuestos Azo/química , Estructuras Metalorgánicas/química , Polímeros/química , Estructura Molecular , Fenilendiaminas/química
5.
Small ; 20(10): e2306508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919860

RESUMEN

The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.


Asunto(s)
Estructuras Metalorgánicas , Polímeros , Benzofenonas , Polietilenglicoles , Cetonas
6.
Small ; 20(30): e2311903, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38453672

RESUMEN

In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.


Asunto(s)
Vendajes , Estructuras Metalorgánicas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Humanos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
7.
Small ; 20(29): e2400399, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38607266

RESUMEN

To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.


Asunto(s)
Frutas , Limoneno , Estructuras Metalorgánicas , Nanofibras , Poliésteres , gamma-Ciclodextrinas , Limoneno/química , Limoneno/farmacología , Nanofibras/química , Poliésteres/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , gamma-Ciclodextrinas/química , Frutas/química , Terpenos/química , Terpenos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Simulación del Acoplamiento Molecular
8.
Small ; 20(31): e2307192, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38517284

RESUMEN

Multiple enzyme-triggered cascade biocatalytic reactions are vital in vivo or vitro, considering the basic biofunction preservation in living organisms and signals transduction for biosensing platforms. Encapsulation of such enzymes into carrier endows a sheltering effect and can boost catalytic performance, although the selection and preparation of an appropriate carrier is still a concern. Herein, focusing on MAF-7, a category of metal azolate framework (MAF) with superiority against the topologically identical ZIF-8, this enzyme@MAF system can ameliorate the sustainability of encapsulating natural enzymes into carriers. The proposed biocatalyst composite AChE@ChOx@MAF-7/hemin is constructed via one-pot in situ coprecipitation method. Subsequently, MAF-7 is demonstrated to exhibit an excellent capacity of the carrier and protection against external factors in the counterpart of ZIF-8 through encapsulated and free enzymes. In addition, detections for specific substrates or inhibitors with favorable sensitivity are accomplished, indicating that the properties above expectation of different aspects of the established platform are successfully realized. This biofunctional composite based on MAF-7 can definitely provide a potential approach for optimization of cascade reaction and enzyme encapsulation.


Asunto(s)
Biocatálisis , Técnicas Biosensibles , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas Biosensibles/métodos , Materiales Biocompatibles/química , Estructuras Metalorgánicas/química , Enzimas/metabolismo , Enzimas/química
9.
Nat Mater ; 22(7): 880-887, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37337069

RESUMEN

Two-dimensional conjugated polymers (2DCPs), composed of multiple strands of linear conjugated polymers with extended in-plane π-conjugation, are emerging crystalline semiconducting polymers for organic (opto)electronics. They are represented by two-dimensional π-conjugated covalent organic frameworks, which typically suffer from poor π-conjugation and thus low charge carrier mobilities. Here we overcome this limitation by demonstrating two semiconducting phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type 2DCPs (2DCP-MPc, with M = Cu or Ni), which are constructed from octaaminophthalocyaninato metal(II) and naphthalenetetracarboxylic dianhydride by polycondensation under solvothermal conditions. The 2DCP-MPcs exhibit optical bandgaps of ~1.3 eV with highly delocalized π-electrons. Density functional theory calculations unveil strongly dispersive energy bands with small electron-hole reduced effective masses of ~0.15m0 for the layer-stacked 2DCP-MPcs. Terahertz spectroscopy reveals the band transport of Drude-type free carriers in 2DCP-MPcs with exceptionally high sum mobility of electrons and holes of ~970 cm2 V-1 s-1 at room temperature, surpassing that of the reported linear conjugated polymers and 2DCPs. This work highlights the critical role of effective conjugation in enhancing the charge transport properties of 2DCPs and the great potential of high-mobility 2DCPs for future (opto)electronics.


Asunto(s)
Estructuras Metalorgánicas , Polímeros , Electrónica , Electrones , Indoles
10.
Nat Mater ; 22(7): 888-894, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169976

RESUMEN

Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).


Asunto(s)
Gases , Estructuras Metalorgánicas , Peso Molecular , Polietileneimina , Polímeros
11.
Langmuir ; 40(20): 10718-10725, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728259

RESUMEN

For accurate in vivo detection, nonspecific adsorption of biomacromolecules such as proteins and cells is a severe issue. The adsorption leads to electrode passivation, significantly compromising both the sensitivity and precision of sensing. Meanwhile, common antibiofouling modifications, such as polymer coatings, still grapple with issues related to biocompatibility, electrode passivation, and miniaturization. Herein, we propose a composite antibiofouling coating strategy based on zwitterionic metal-organic frameworks (Z-MOFs) and a combination of acrylamide hydrogels. On a well-designed TiO2/Z-MOF/hydrogel photoelectrode, we achieve highly sensitive and selective detection of dopamine in complex biological environments. The hydrogel's three-dimensional porous structure combined with unique microporous architecture of Z-MOF ensures effective sieving of interfering macromolecules while preserving efficient small molecules and electron transport. This innovative approach paves the way for constructing miniature, in vivo antibiofouling sensors for molecule monitoring in living organisms with complicated chemical environments.


Asunto(s)
Técnicas Biosensibles , Dopamina , Hidrogeles , Titanio , Hidrogeles/química , Dopamina/análisis , Dopamina/química , Técnicas Biosensibles/métodos , Titanio/química , Incrustaciones Biológicas/prevención & control , Técnicas Electroquímicas/métodos , Procesos Fotoquímicos , Estructuras Metalorgánicas/química , Materiales Biocompatibles/química , Electrodos
12.
Langmuir ; 40(17): 8921-8938, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626327

RESUMEN

In this work, a trimetallic (Ni/Co/Zn) organic framework (tMOF), synthesized by a solvothermal method, was calcinated at 400 and 600 °C and the final products were used as a support for lipase immobilization. The material annealed at 400 °C (Ni-Co-Zn@400) had an improved surface area (66.01 m2/g) and pore volume (0.194 cm3/g), which showed the highest enzyme loading capacity (301 mg/g) with a specific activity of 0.196 U/mg, and could protect the enzyme against thermal denaturation at 65 °C. The optimal pH and temperature for the lipase were 8.0 and 45 °C but could tolerate pH levels 7.0-8.0 and temperatures 40-60 °C. Moreover, the immobilized enzyme (Ni-Co-Zn@Lipase, Ni-Co-Zn@400@Lipase, or Ni-Co-Zn@600@Lipase) could be recovered and reused for over seven cycles maintaining 80, 90, and 11% of its original activity and maintained a residual activity >90% after 40 storage days. The remarkable thermostability and storage stability of the immobilized lipase suggest that the rigid structure of the support acted as a protective shield against denaturation, while the improved pH tolerance toward the alkaline range indicates a shift in the ionization state attributed to unequal partitioning of hydroxyl and hydrogen ions within the microenvironment of the active site, suggesting that acidic residues may have been involved in forming an enzyme-support bond. The high enzyme loading capacity, specific activity, encouraging stability, and high recoverability of the tMOF@Lipase indicate that a multimetallic MOF could be a better platform for efficient enzyme immobilization.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Nanocompuestos , Zinc , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Nanocompuestos/química , Concentración de Iones de Hidrógeno , Zinc/química , Estabilidad de Enzimas , Temperatura , Cobalto/química , Níquel/química , Aleaciones/química , Estructuras Metalorgánicas/química
13.
Analyst ; 149(5): 1658-1664, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38323490

RESUMEN

The distribution of gold nanoparticles (AuNPs) on the surface of a metal-organic framework (MOF) plays a crucial role in the catalytic performance of MOF-AuNP composites. This study describes how the physical adsorption (PH@AuNPs-on-U) and chemical modification of AuNPs on the surface of UiO-66-NH2 (U) affect the composites' catalytic efficiency. After 2-vinyl-4,4-dimethyl-2-oxazolin-5-one (VD) linked to poly(N-2-hydroxypropyl methacrylamide) (PH) with U (UVD-PH), UVD-PH@AuNPs composites were constructed with PH as the capping and reducing reagent. The composites exhibited higher peroxidase (POD)-like activity than PH@AuNPs-on-U for oxidising 3,3'5,5'-tetramethylbenzidine (TMB) with H2O2. The approach demonstrated that the proposed composite-based nanozymes could significantly enhance their catalytic activity and had a highly uniform distribution of PH@AuNPs on the surface of UVD. An assay with the nanozymes for visual detection of homocysteine (Hcy) was developed, displaying a good linear relationship (R2 = 0.998) ranging from 3.34 µM to 30.0 µM and a detection of limit of 0.3 µM. Additionally, the UVD-PH@AuNPs-TMB-H2O2 system successfully monitored serum Hcy after intraperitoneal injection in rats. This study paves a new way for developing MOF-AuNPs with highly uniform surface distribution of polymer@AuNPs to boost its catalytic activity and to detect drugs in real bio-samples.


Asunto(s)
Bencidinas , Nanopartículas del Metal , Estructuras Metalorgánicas , Ratas , Animales , Oro , Polímeros , Peróxido de Hidrógeno , Antioxidantes , Colorimetría
14.
Inorg Chem ; 63(31): 14699-14711, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047187

RESUMEN

The selective separation and purification of artesunate (ARU) and artemisinin (ART) using zirconium-based metal-organic frameworks (MOF), especially UiO-66 MOF, are receiving increasing attention. In this study, tunable "hydrophobic" sites of thiol (-SH) were introduced to amino-functionalized MOFs (UiO-66-NH2) to fabricate a thiol-amino bifunctional UiO-66/polyvinylidene fluoride (PVDF)-blended membrane (S1-UiO/PVDF-DPIM) via the delayed-phase-inversion method for selective separation of ARU/ART. The adsorption results indicated that the modification of UiO-66-NH2 with thiol can indeed increase the ARU adsorption. The thiol-functional MOF (S1-UiO-66-NH2) was chosen as the optimal thiol-amino bifunctional MOF, as it possessed the maximum ARU adsorption capacity (111.14 mg g-1) and the highest selective-separation factor (α = 51.84). The ATR FT-IR dynamic spectrum disclosed the recognition mechanism, indicating that incorporating thiol groups into a hydrophilic MOF as hydrophobic sites can boost adsorption efficiency. Moreover, the static-selective permeation results showed that the S1-UiO/PVDF-DPIM preferentially transfers ARU when mixed with ART, even achieving complete ARU/ART separation. The most crucial aspect was the introduction of a hydrophobic core of -SH and new spontaneously formed disulfide bonds to S1-UiO/PVDF-DPIM, creating alternated hydrogen bonds and hydrophobic interactions. This work provides an alternative strategy to prepare hydrophobic-hydrophilic MOF-based membranes for the highly efficient and selective separation of complex analogue systems.


Asunto(s)
Artesunato , Interacciones Hidrofóbicas e Hidrofílicas , Estructuras Metalorgánicas , Compuestos de Sulfhidrilo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/aislamiento & purificación , Artesunato/química , Artesunato/farmacología , Artesunato/aislamiento & purificación , Adsorción , Polivinilos/química , Membranas Artificiales , Estructura Molecular , Artemisininas/química , Artemisininas/aislamiento & purificación , Circonio/química , Propiedades de Superficie , Polímeros de Fluorocarbono , Ácidos Ftálicos
15.
Chem Rev ; 122(3): 4163-4203, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35044749

RESUMEN

The crystal-liquid-glass phase transition of coordination polymers (CPs) and metal-organic frameworks (MOFs) offers attractive opportunities as a new class of amorphous materials. Unlike conventional glasses, coordination chemistry allows the utilization of rational design concepts to fine-tune the desired properties. Although the glassy state has been rare in CPs/MOFs, it exhibits diverse advantages complementary to their crystalline counterparts, including improved mass transport, optical properties, mechanical properties, and the ability to form grain-boundary-free monoliths. This Review discusses the current achievements in improving the understanding of anomalous phase transitions in CPs/MOFs. We elaborate on the criteria for classifying CP/MOF glasses and comprehensively discuss the three common strategies employed to obtain a glassy state. We include all CP/MOF glass research progress since its inception, discuss the current challenges, and express our perspective on future research directions.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Metales , Polímeros
16.
Anal Bioanal Chem ; 416(20): 4491-4501, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877148

RESUMEN

In the present study, click chemistry and Schiff base reactions were simultaneously applied to prepare polymer brush (PEG)-functionalized MOF materials (UiO-66-NH2) and immobilized with Ti4+ (MOF-Brush-THBA-Ti4+) for phosphopeptide analysis. The material has a detection limit of 0.5 fmol, a selectivity of 2000:1, and a loading capacity of 133 mg/g for phosphopeptides. It also demonstrated great repeatability (10 cycles) and recovery rate (96.7 ± 1.4%). During the analysis of bio-samples, 4 specific phosphopeptides were identified in endogenous breast cancer serum, while 11 phosphopeptides were identified in skimmed milk. Moreover, 47 phosphopeptides correlated with 29 phosphorylated proteins were selectively identified from normal control serum, and 66 phosphopeptides correlated with 26 phosphorylated proteins were identified from breast cancer serum. Further analysis of gene ontology (GO) revealed that the detected phosphorylated proteins associated with breast cancer included positive regulation of receptor-mediated endocytosis, proteolysis, extracellular exosome, heparin binding, and chaperone binding. These findings suggest that these associated pathways might contribute to the etiology of breast cancer. Overall, this application exhibits enormous potential in the identification of phosphorylated peptides within bio-samples.


Asunto(s)
Estructuras Metalorgánicas , Leche , Fosfopéptidos , Titanio , Circonio , Humanos , Fosfopéptidos/sangre , Fosfopéptidos/química , Titanio/química , Circonio/química , Estructuras Metalorgánicas/química , Leche/química , Animales , Polímeros/química , Femenino , Neoplasias de la Mama/sangre , Límite de Detección , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
17.
Anal Bioanal Chem ; 416(19): 4289-4299, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38839685

RESUMEN

The reasonable design of metal-organic framework (MOF)-derived nanomaterial has important meaning in increasing the enrichment efficiency in the study of protein phosphorylation. In this work, a polyoxometalate (POM) functionalized magnetic MOF nanomaterial (Fe3O4@MIL-125-POM) was designed and fabricated. The nanomaterial with multi-affinity sites (unsaturated metal sites and metal oxide clusters) was used for the enrichment of phosphopeptides. Fe3O4@MIL-125-POM had high-efficient enrichment performance towards phosphopeptides (selectivity, a mass ratio of bovine serum albumin/α-casein/ß-casein at 5000:1:1; sensitivity, 0.1 fmol; satisfactory repeatability, ten times). Furthermore, Fe3O4@MIL-125-POM was employed to enrich phosphopeptides from non-fat milk digests, saliva, serum, and A549 cell lysate. The enrichment results illustrated the great potential of Fe3O4@MIL-125-POM for efficient identification of low-abundance phosphopeptides.


Asunto(s)
Estructuras Metalorgánicas , Fosfopéptidos , Compuestos de Tungsteno , Fosfopéptidos/química , Estructuras Metalorgánicas/química , Humanos , Compuestos de Tungsteno/química , Animales , Leche/química , Bovinos , Células A549 , Albúmina Sérica Bovina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Saliva/química
18.
Macromol Rapid Commun ; 45(8): e2300678, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183637

RESUMEN

Covalent organic frameworks (COFs) represent a new type of crystalline porous polymers that possess pre-designed skeletons, uniform nanopores, and ordered π structure. These attributes make them well-suited for the design of light-emitting materials. However, the majority of COFs exhibits poor luminescence due to aggregation-caused quenching (ACQ), resulting from the strong interaction between adjacent layers. To break the limitation, the building units with three methoxy groups on the walls are used to construct TM-OMe-EBTHz-COF, which suppresses the ACQ effects to improve light-emitting activity of COF. The TM-OMe-EBTHz-COF exhibits a notable emission of yellow-green luminescence in the solid state, with a remarkably high absolute quantum yield of 21.1%. The methoxy groups and hydrazine linkage form three coordination sites, contributing to excellent performance in metal ions sensing. The TM-OMe-EBTHz-COF demonstrates high sensitivity and selectivity to Fe3+ ion. Importantly, the low detection limit is below 150 nanomolar, ranking it among the best-performing Fe3+ sensor systems.


Asunto(s)
Hierro , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Hierro/química , Hierro/análisis , Iones/química , Iones/análisis , Polímeros/química , Polímeros/síntesis química , Porosidad , Estructura Molecular , Luminiscencia , Límite de Detección , Tamaño de la Partícula , Propiedades de Superficie
19.
Macromol Rapid Commun ; 45(10): e2300730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407503

RESUMEN

Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.


Asunto(s)
Polímeros , Polímeros/química , Porosidad , Estructuras Metalorgánicas/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Polvos/química , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Propiedades de Superficie
20.
Environ Res ; 252(Pt 1): 118875, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582432

RESUMEN

The various apple products industries produce a large amount of apple residue, which is easily fermented, causes environmental pollution, and its disposal cost is high, but is rich in nutrients, such as polyphenols. Polyphenols can be purified to realize high-value deep processing of apple pomace and to promote energy reuse of food waste. In this study, the highly selective purification of polyphenols was achieved by membrane filtration using prepared Metal-organic framework (MOF)-5/PES mixed matrix membranes with apple peels as raw material. The polyethersulfone mixed matrix membrane was loaded with MOF-5 by the phase inversion method, and their structural and physicochemical properties were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). Zeta potential and specific surface area of MOF-5 particles were measured, as well as the water contact angle and anti-fouling properties of the mixed matrix membrane were analyzed. It was confirmed that the membrane loaded with MOF-5 showed better hydrophilicity and mechanical properties compared with the pristine polyether sulfone membrane. Under practical conditions, the increased hydrophilicity could enhance the anti-fouling properties of membranes, which would improve the flux recovery ratio of membranes. In addition, the prepared MOF-5/PES mixed matrix membrane was applied to the purification of polyphenols, showing excellent purification performance of polyphenols. In particular, the purity of polyphenol after membrane filtration could reach 70.45% when the additional amount of MOF-5 was 10%. This research provides a method to prepare MOF-5/PES mixed matrix membranes, which effectively solves the problem of unstable and unsatisfactory purification effect of commercially available membranes, promotes the development of new materials in membrane science, and realizes high-value deep processing and comprehensive resource development of food waste using membrane filtration.


Asunto(s)
Filtración , Membranas Artificiales , Estructuras Metalorgánicas , Polímeros , Polifenoles , Sulfonas , Sulfonas/química , Polifenoles/aislamiento & purificación , Polifenoles/análisis , Polifenoles/química , Polímeros/química , Filtración/métodos , Estructuras Metalorgánicas/química , Malus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA