Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 286(1896): 20182427, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963933

RESUMEN

Understanding the origin of novel complex traits is among the most fundamental goals in evolutionary biology. The most widely used definition of novelty in evolution assumes the absence of homology, yet where homology ends and novelty begins is increasingly difficult to parse as evo devo continuously revises our understanding of what constitutes homology. Here, we executed a case study to explore the earliest stages of innovation by examining the tibial teeth of tunnelling dung beetles. Tibial teeth are a morphologically modest innovation, composed of relatively simple body wall projections and contained fully within the fore tibia, a leg segment whose own homology status is unambiguous. We first demonstrate that tibial teeth aid in multiple digging behaviours. We then show that the developmental evolution of tibial teeth was dominated by the redeployment of locally pre-existing gene networks. At the same time, we find that even at this very early stage of innovation, at least two genes that ancestrally function in embryonic patterning and thus entirely outside the spatial and temporal context of leg formation, have already become recruited to help shape the formation of tibial teeth. Our results suggest a testable model for how developmental evolution scaffolds innovation.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/genética , Escarabajos/anatomía & histología , Escarabajos/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Animales , Escarabajos/embriología , Extremidades/anatomía & histología , Extremidades/embriología , Femenino
2.
Proc Biol Sci ; 282(1808): 20150698, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25948691

RESUMEN

The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.


Asunto(s)
Arácnidos/genética , Proteínas de Artrópodos/genética , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Animales , Arácnidos/embriología , Proteínas de Artrópodos/metabolismo , Extremidades/embriología , Cangrejos Herradura/embriología , Cangrejos Herradura/genética , Insectos/embriología , Insectos/genética , Datos de Secuencia Molecular , Interferencia de ARN , Escorpiones/embriología , Escorpiones/genética , Análisis de Secuencia de ADN
3.
J Exp Zool B Mol Dev Evol ; 322(8): 643-53, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25393554

RESUMEN

A primary goal of evolutionary biology is to identify the factors that shape phenotypic evolution. According to the theory of natural selection, phenotypic evolution occurs through the differential survival and reproduction of individuals whose traits are selectively advantageous relative to other individuals in the population. This implies that evolution by natural selection is contingent upon the distribution and magnitude of phenotypic variation among individuals, which are in turn the products of developmental processes. Development therefore has the potential to affect the trajectory and rate of phenotypic evolution. Recent research in diverse systems (e.g., mammalian teeth, cichlid skulls, butterfly wings, and marsupial limbs) supports the hypothesis that development biases phenotypic variation and evolution, but suggests that these biases might be system-specific.


Asunto(s)
Evolución Biológica , Extremidades/embriología , Variación Genética , Marsupiales/embriología , Fenotipo , Selección Genética , Animales , Extremidades/crecimiento & desarrollo , Marsupiales/crecimiento & desarrollo , Morfogénesis
4.
Am J Hum Genet ; 87(2): 265-73, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20691405

RESUMEN

Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known "nectinopathy" caused by mutations in a nectin adhesion molecule.


Asunto(s)
Moléculas de Adhesión Celular/genética , Displasia Ectodérmica/complicaciones , Displasia Ectodérmica/genética , Mutación/genética , Sindactilia/complicaciones , Sindactilia/genética , Anomalías Múltiples/genética , Adulto , Secuencia de Aminoácidos , Animales , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Niño , Extremidades/embriología , Familia , Femenino , Regulación del Desarrollo de la Expresión Génica , Cabello/patología , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Linaje , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Piel/patología , Síndrome
5.
Dev Dyn ; 238(11): 2770-86, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19842173

RESUMEN

Using the Standard Event System (SES) to study patterns of vertebrate development, we describe a series of 17 embryos of the pleurodire turtle Emydura subglobosa. Based on a sequence heterochrony analysis including 23 tetrapod taxa, we identified autapomorphic developmental shifts that characterise Testudines, Cryptodira, and Pleurodira. The main results are that Testudines are characterised by an autapomorphic late neck development, whereas pleurodires and cryptodires show a different developmental timing of the mandibular process. Additionally, we described the ossification pattern of E. subglobosa and compared the data to those of five other turtles. Pleurodires show the epiplastron to ossify before or simultaneously with maxilla and dentary. In contrast, cryptodires show a later ossification of this bone. Because evolutionary developmental studies on turtles have previously focused only on "model organisms" that all belong to Cryptodira, we underline the necessity to include a pleurodire taxon for a more comprehensive, phylogenetically more informative approach.


Asunto(s)
Desarrollo Embrionario/fisiología , Osteogénesis/fisiología , Tortugas/embriología , Animales , Embrión no Mamífero/embriología , Embrión no Mamífero/fisiología , Extremidades/embriología , Cráneo/embriología , Columna Vertebral/embriología
6.
Dev Dyn ; 238(12): 3175-84, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19877269

RESUMEN

Pitrm1 is a zinc metalloendopeptidase that has been implicated in Alzheimer's disease and mitochondrial peptide degradation, but to date no major role in embryonic development has been documented. In a screen for genes regulated by hedgehog signaling in the mouse limb, we showed that expression of Pitrm1 is upregulated in response to loss of the Gli3 transcription factor. Here we confirm spatial changes in Pitrm1 expression in the Gli3 mutant mouse limb and examine Pitrm1 expression in Shh null and Ptch1 conditional deletion mouse mutants. In wild-type mice, Pitrm1 is expressed in a number of developing tissues known to be patterned by Sonic hedgehog, including the limbs, face, cortex, hippocampus, cerebellum, tectum, sub-mandibular gland, lung, genital tubercle, hair follicles, and the enamel knot of the teeth. Additionally, Pitrm1 is expressed in Pax3-expressing myoblast progenitors in the limb, the dermomyotome, and developing muscles of the face and torso.


Asunto(s)
Extremidades/embriología , Proteínas Hedgehog/fisiología , Metaloendopeptidasas/genética , Músculo Esquelético/embriología , Células Madre/metabolismo , Animales , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Metaloendopeptidasas/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/metabolismo , Transducción de Señal/genética , Distribución Tisular
7.
J Cell Biol ; 124(6): 1091-1102, 1994 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8132709

RESUMEN

cDNA clones for murine 92 kD type IV collagenase (gelatinase B) were generated for the determination of its primary structure and for analysis of temporal and spatial expression in vivo. The mouse enzyme has 72% sequence identity with the human counterpart, the major difference being the presence of a 16-residue segment absent from the human enzyme. In situ hybridization analyses of embryonic and postnatal mouse tissues revealed intense signals in cells of the osteoclast cell lineage. Clear expression above background was not observed in macrophages, polymorphonuclear leukocytes, monocytes, or epithelial cells which have been shown to express the gene in vitro in cell cultures. Expression of the gene was first observed at early stage of cartilage and tooth development at E13, where signals were seen transiently in surrounding mesenchymal cells. At later developmental stages and postnatally strong expression was seen in large cells at the surface of bones. These cells were presumably osteoclasts as their location correlated with that of TRAP positive cells. Signals above background were not observed in a number of other tissues studied. The results represent the first demonstration of a highly osteoclast specific extracellular proteinase. The results suggest that during normal development of embryonic organs the 92-kD type IV collagenase does not have a major role in basement membrane degradation, but is rather mainly used for the turnover of bone matrix, possibly as a gelatinase required for the removal of denatured collagen fragments (gelatin) generated by interstitial collagenase.


Asunto(s)
Colagenasas/biosíntesis , Osteoclastos/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Colagenasas/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario y Fetal , Extremidades/embriología , Expresión Génica , Humanos , Hibridación in Situ , Metaloproteinasa 9 de la Matriz , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Datos de Secuencia Molecular , Osteoclastos/citología , Homología de Secuencia de Aminoácido
8.
Curr Biol ; 4(8): 671-5, 1994 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-7953552

RESUMEN

BACKGROUND: Arthropod diversity is apparent in the variations in limb number, type, and position along the body axis. Among the insects, for example, butterflies and moths (Lepidoptera) develop larval abdominal and caudal appendages ('prolegs'), whereas flies (Diptera) do not. Comparative studies of the expression and regulation during development of limb-patterning genes, such as Distal-less (Dll), may provide insights into arthropod evolution. RESULTS: We report the cloning of a Dll homolog from the butterfly Precis coenia, and present data showing that it is expressed in all developing limbs (except the mandible), including the prolegs; the relationship between Dll and wingless expression observed in Drosophila is conserved in Precis among all limbs. However, Dll is deployed in distinct spatial and temporal patterns within each limb type. CONCLUSIONS: These data suggest that Dll function, suppressed in the abdomen early in insect evolution, has been derepressed in Lepidoptera, and also suggest that there is a common mechanism underlying the formation of all insect appendages. The limb-type-specific patterns of Dll expression (and its exclusion from the mandible) indicate that regulation of Dll expression may be critical to limb morphology, and are inconsistent with Dll functioning in a simple distal-to-proximal concentration gradient.


Asunto(s)
Extremidades/crecimiento & desarrollo , Genes Homeobox , Insectos/genética , Secuencia de Aminoácidos , Animales , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/embriología , Mariposas Diurnas/genética , Mariposas Diurnas/crecimiento & desarrollo , Clonación Molecular , Drosophila/embriología , Drosophila/genética , Drosophila/crecimiento & desarrollo , Extremidades/embriología , Regulación de la Expresión Génica , Insectos/anatomía & histología , Insectos/embriología , Insectos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Metamorfosis Biológica , Datos de Secuencia Molecular , Morfogénesis/genética , Pupa/crecimiento & desarrollo , Alineación de Secuencia , Especificidad de la Especie , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo
9.
Mol Cell Biol ; 18(10): 6044-51, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9742121

RESUMEN

Previously, we found that the cause of autosomal dominant selective tooth agenesis in one family is a missense mutation resulting in an arginine-to-proline substitution in the homeodomain of MSX1. To determine whether the tooth agenesis phenotype may result from haploinsufficiency or a dominant-negative mechanism, we have performed biochemical and functional analyses of the mutant protein Msx1(R31P). We show that Msx1(R31P) has perturbed structure and reduced thermostability compared with wild-type Msx1. As a consequence, the biochemical activities of Msx1(R31P) are severely impaired, since it exhibits little or no ability to interact with DNA or other protein factors or to function in transcriptional repression. We also show that Msx1(R31P) is inactive in vivo, since it does not display the activities of wild-type Msx1 in assays of ectopic expression in the limb. Furthermore, Msx1(R31P) does not antagonize the activity of wild-type Msx1 in any of these assays. Because Msx1(R31P) appears to be inactive and does not affect the action of wild-type Msx1, we propose that the phenotype of affected individuals with selective tooth agenesis is due to haploinsufficiency.


Asunto(s)
Proteínas de Homeodominio/fisiología , Anomalías Dentarias/genética , Factores de Transcripción , Sustitución de Aminoácidos , Animales , Arginina/genética , Arginina/metabolismo , Arginina/fisiología , Sitios de Unión , Pollos , ADN/metabolismo , Extremidades/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factor de Transcripción MSX1 , Ratones , Prolina/genética , Prolina/metabolismo , Prolina/fisiología
10.
Nucleic Acids Res ; 33(16): 5208-18, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16157866

RESUMEN

Bidirectional transcription, leading to the expression of an antisense (AS) RNA partially complementary to the protein coding sense (S) RNA, is an emerging subject in mammals and has been associated with various processes such as RNA interference, imprinting and transcription inhibition. Homeobox genes do not escape this bidirectional transcription, raising the possibility that such AS transcription occurs during embryonic development and may be involved in the complexity of regulation of homeobox gene expression. According to the importance of the Msx1 homeobox gene function in craniofacial development, especially in tooth development, the expression and regulation of its recently identified AS transcripts were investigated in vivo in mouse from E9.5 embryo to newborn, and compared with the S transcript and the encoded protein expression pattern and regulation. The spatial and temporal expression patterns of S, AS transcripts and protein are consistent with a role of AS RNA in the regulation of Msx1 expression in timely controlled developmental sites. Epithelial-mesenchymal interactions were shown to control the spatial organization of S and also AS RNA expression during early patterning of incisors and molars in the odontogenic mesenchyme. To conclude, this study clearly identifies the Msx1 AS RNA involvement during tooth development and evidences a new degree of complexity in craniofacial developmental biology: the implication of endogenous AS RNAs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , ARN sin Sentido/biosíntesis , Diente/embriología , Factores de Transcripción/genética , Animales , Embrión de Mamíferos/metabolismo , Extremidades/embriología , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/farmacología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/metabolismo , Incisivo/embriología , Incisivo/metabolismo , Factor de Transcripción MSX1 , Mandíbula/efectos de los fármacos , Mandíbula/embriología , Mandíbula/metabolismo , Ratones , Diente Molar/embriología , Diente Molar/metabolismo , ARN sin Sentido/fisiología , ARN Mensajero/biosíntesis , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo
11.
J Morphol ; 278(4): 563-573, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28168720

RESUMEN

Tardigrada, commonly called water bears, is a taxon of microscopic panarthropods with five-segmented bodies and four pairs of walking legs. Although tardigrades have been known to science for several centuries, questions remain regarding many aspects of their biology, such as embryogenesis. Herein, we used scanning electron microscopy to document the external changes that occur during embryonic development in the tardigrade Hypsibius dujardini (Eutardigrada, Parachela, Hypsibiidae). Our results show an accelerated development of external features, with approximately 30 hrs separating the point at which external structures first become recognizable and a fully formed embryo. All segments appear to arise simultaneously between ∼20 and 25 hrs of development, and no differences in the degree of development could be detected between the limb buds at any stage. Claws emerge shortly after the limb buds and are morphologically similar to those of adults. The origin of the claws is concurrent with that of the sclerotized parts of the mouth, suggesting that all cuticular structures arise simultaneously at ∼30 hrs. The mouth arises as an invagination in the terminal region of the head at ∼25 hrs, closes later in development, and opens again shortly before hatching. The anlagen of the peribuccal lobes arise as one dorsal and one ventral row, each consisting of three lobes, and later form a ring in the late embryo, whereas there is no indication of a labrum anlage at any point during development. Furthermore, we describe limited postembryonic development in the form of cuticular pores that are absent in juveniles but present in adults. This study represents the first scanning electron micrographs of tardigrade embryos, demonstrating the utility of this technique for studying embryogenesis in tardigrades. This work further adds an external morphological perspective to the developmental data already available for H. dujardini, facilitating future comparisons to related panarthropod taxa. J. Morphol. 278:563-573, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Morfogénesis , Tardigrada/embriología , Tardigrada/ultraestructura , Animales , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/ultraestructura , Desarrollo Embrionario , Extremidades/embriología
12.
Arch Oral Biol ; 51(2): 134-45, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16105644

RESUMEN

Experimental evidence has demonstrated the importance of FGF signalling in morphogenesis of the mandibular processes. FGFs transmit their signals through four tyrosine kinase transmembrane receptors (FGFRs). Alternative splicing in FGFRs including FGFR2 generates different isoforms that exhibit different ligand-specificities, exclusive tissue distributions and specific biological functions. Despite extensive information regarding the isoform-specific patterns of expression Fgfr2c and Fgfr2b during morphogenesis of many organs, a comparative analysis of these specific isoforms in the chick mandible has not been reported. To better understand the function of FGFR2 in mandibular morphogenesis, we have analysed the expression Fgfr2b, Fgfr2c and their putative ligands Fgf10 and Fgf9, in the developing chick mandibular processes by in situ hybridisation and RT-PCR. Our observations show that Fgfr2b was primarily expressed in the mandibular epithelium while Fgfr2c was expressed in the mandibular mesenchyme including Meckel's cartilage. Fgf9 and Fgf10 were expressed in a variety of craniofacial regions including the mandibular epithelium and mesenchyme respectively. The temporal and spatial distributions of Fgfr2b, Fgfr2c, Fgf10 and Fgf9 in the developing mandible reported in this study make them attractive candidates for involvement in epithelial-mesenchymal signalling interactions that are known to be necessary for proper mandibular outgrowth and morphogenesis.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Mandíbula/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Embrión de Pollo , Extremidades/embriología , Cara/embriología , Hibridación in Situ , Ligandos , Mandíbula/embriología , Mesodermo/metabolismo , Morfogénesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/fisiología
13.
Nucleic Acids Res ; 30(5): 1213-23, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11861914

RESUMEN

Msx2 is a homeobox gene expressed in multiple embryonic tissues which functions as a key mediator of numerous developmental processes. YY1 is a bi-functional zinc finger protein that serves as a repressor or activator to a variety of promoters. The role of YY1 during embryogenesis remains unknown. In this study, we report that Msx2 is regulated by YY1 through protein-DNA interactions. During embryogenesis, the expression pattern of YY1 was observed to overlap in part with that of Msx2. Most notably, during first branchial arch and limb development, both YY1 and Msx2 were highly expressed, and their patterns were complementary. To test the hypothesis that YY1 regulates Msx2 gene expression, P19 embryonal cells were used in a number of expression and binding assays. We discovered that, in these cells, YY1 activated endogenous Msx2 gene expression as well as Msx2 promoter-luciferase fusion gene activity. These biological activities were dependent on both the DNA binding and activation domains of YY1. In addition, YY1 bound specifically to three YY1 binding sites on the proximal promoter of Msx2 that accounted for this transactivation. Mutations introduced to these sites reduced the level of YY1 transactivation. As bone morphogenetic protein type 4 (BMP4) regulates Msx2 expression in embryonic tissues and in P19 cells, we further tested whether YY1 is the mediator of this BMP4 activity. BMP4 did not induce the expression of YY1 in early mouse mandibular explants, nor in P19 cells, suggesting that YY1 is not a required mediator of the BMP4 pathway in these tissues at this developmental stage. Taken together, these findings suggest that YY1 functions as an activator for the Msx2 gene, and that this regulation, which is independent of the BMP4 pathway, may be required during early mouse craniofacial and limb morphogenesis.


Asunto(s)
Proteínas Morfogenéticas Óseas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/fisiología , Activación Transcripcional , Animales , Proteína Morfogenética Ósea 4 , Región Branquial/embriología , Región Branquial/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/química , Ensayo de Cambio de Movilidad Electroforética , Factores de Unión al ADN Específico de las Células Eritroides , Extremidades/embriología , Genes Reporteros , Proteínas de Homeodominio , Hibridación in Situ , Mandíbula/efectos de los fármacos , Mandíbula/embriología , Mandíbula/metabolismo , Ratones , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN Mensajero/biosíntesis , Transducción de Señal , Transactivadores/química , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/química , Factores de Transcripción/genética , Transfección , Células Tumorales Cultivadas , Factor de Transcripción YY1
14.
Oncogene ; 9(6): 1613-24, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8183555

RESUMEN

Members of the protein superfamily of transmembrane receptor tyrosine kinases are key components of intercellular signal transduction pathways that elicit appropriate cellular responses to environmental cues during development of multicellular organisms. In a search for additional receptor tyrosine kinases expressed during mouse embryogenesis we cloned the murine homolog of Eck, a member of the Eph subfamily, that maps to the distal region of mouse chromosome 4. Specific antisera defined Eck in murine embryonic cells as a glycoprotein of 130 kDa with an intrinsic autophosphorylation activity. Immunohistochemical staining and laser scanning microscopy revealed a dynamic and tightly regulated distribution of Eck receptor protein in the developing mouse embryo. During gastrulation, a high transient distribution of Eck was seen in mesodermal cells aggregating in the midline as notochordal plate. A similar restriction of Eck receptor protein was apparent along the rostrocaudal axis of the developing neural tube. In hindbrain neuroepithelia, Eck protein localised specifically to cells of rhombomere 4 and was also seen transiently in cells populating second and third branchial arches and neurogenic facial crest VII-VIII and IX-X. Receptor distribution also implicated Eck in development of the proximodistal axis of the limb, expression being restricted to distal regions of limb bud mesenchyme. At later stages, additional sites of Eck protein expression were seen in the cartilaginous model of the skeleton, tooth primordia, infundibular component of the pituitary and various fetal tissue epithelia. Taken together, our data suggest pleiotropic functions for the Eck receptor, initially in distinctive aspects of pattern formation and subsequently in development of several fetal tissues, and reveal possible allelism with known mouse developmental mutant loci.


Asunto(s)
Extremidades/embriología , Gástrula/fisiología , Proteínas de la Membrana/análisis , Proteínas Tirosina Quinasas/análisis , Rombencéfalo/embriología , Animales , Secuencia de Bases , Región Branquial/fisiología , Células Cultivadas , Mapeo Cromosómico , Clonación Molecular , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Receptor EphA2
15.
Mech Dev ; 113(2): 181-4, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11960709

RESUMEN

We report the isolation and expression patterns of aristaless (al), a paired-type homeobox gene, of Gryllus bimaculatus (Gb), a hemimetabola model insect. Gryllus al (Gbal) is expressed in the most distal region of developing labrum, antenna, mandible, maxilla, labium, leg, cercus, and hindgut. Gbal is also expressed in the proximal region, corresponding to the presumptive coxopodite, of the developing antenna, mandible, maxilla, labium, and leg, but not in the developing labrum, cercus, and hindgut. During development of the leg, expression of Gbal changes dynamically with the progress in leg segmentation: Gbal is expressed in order in the presumptive pretarsus, coxa, femur, tibia and tarsus before appearance of morphological segmentation.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Extremidades/embriología , Secuencia de Aminoácidos , Animales , ADN Complementario/metabolismo , Proteínas de Drosophila/química , Expresión Génica , Gryllidae , Hibridación in Situ , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Factores de Tiempo
16.
Mech Dev ; 69(1-2): 203-7, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9486542

RESUMEN

The Drosophila Notch gene and its ligands, Delta and Serrate, are involved in cell fate determination in a variety of developing tissues. Recently, several Notch, Delta and Serrate homologues have been identified in vertebrates. We report here the cloning of the human and murine JAGGED2 (JAG2), a Serrate-like gene, and the analysis of its expression pattern during embryogenesis. Jag2 was found to be expressed as early as E9 in the surface ectoderm of the branchial arches and in the apical ectodermal ridge (AER) of the developing limb. At E12.5, Jag2 expression is upregulated in differentiated neurons of the central and peripheral nervous system and in the inner neuroblastic layer of the developing retina. Outside the nervous system, Jag2 is expressed in the developing vibrissae follicles, tooth buds, thymus, submandibular gland and stomach. Our findings suggest the involvement of Jagged2 in the development of the mammalian limb, branchial arches, central and peripheral nervous systems and several tissues whose development depends upon epithelial-mesenchymal interactions.


Asunto(s)
Proteínas Portadoras/genética , Ectodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Mesodermo/fisiología , Proteínas/genética , Animales , Inducción Embrionaria , Epitelio/fisiología , Extremidades/embriología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteína Jagged-2 , Ratones , Datos de Secuencia Molecular , Sistema Nervioso/embriología , Proteínas/metabolismo , Receptores Notch , Homología de Secuencia de Aminoácido
17.
Mech Dev ; 107(1-2): 175-9, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11520675

RESUMEN

We have isolated a new mouse gene, odd-skipped related 2 (Osr2), that encodes a zinc finger containing protein related to Drosophila Odd-skipped. The putative OSR2 protein shares 65% amino acid sequence identity overall and 98% sequence identity in the zinc finger region, respectively, with the previously reported Osr1 gene product. During mouse embryonic development, Osr2 expression is first detected at E9.25, specifically in the mesonephric vesicles. By E10.0, Osr2 expression is also observed in the rostro-lateral mandibular mesenchyme immediately adjacent to the maxillary processes. In the developing limb buds, Osr2 is expressed in a unique mesenchymal domain and the onset of Osr2 expression follows a distinct dorsal to ventral developmental time sequence beginning in the forelimb and then in the hindlimb. Osr2 exhibits a dynamic expression pattern during craniofacial development, in the mandibular and maxillary processes as well as the developing palate. Osr2 is also expressed at sites of epithelial-mesenchymal interactions during tooth and kidney development.


Asunto(s)
Extremidades/embriología , Expresión Génica , Riñón/embriología , Cráneo/embriología , Factores de Transcripción/química , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Desarrollo Embrionario y Fetal , Perfilación de la Expresión Génica , Hibridación in Situ , Maxilares/embriología , Maxilares/metabolismo , Riñón/metabolismo , Ratones , Datos de Secuencia Molecular , Cráneo/metabolismo , Factores de Transcripción/metabolismo
18.
Mech Dev ; 110(1-2): 173-7, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11744378

RESUMEN

We recently cloned the murine homologue of Cyp26B1, a novel retinoic acid (RA)-metabolizing enzyme and showed that its gene expression pattern is unique from that of Cyp26A1 during early embryogenesis. Here, we complete this comparative expression analysis from embryonic day (E) 12 to postnatal stages. Cyp26B1 expression was found in developing tendons and precartilaginous elements and in perichondrium by E14.5, while Cyp26A1 expression was restricted to extremities of rib and vertebral cartilage. Cyp26A1 and Cyp26B1 were expressed, in the distal epithelium and mesenchyme of the limbs and genital tubercle, respectively. High Cyp26B1 expression was found in craniofacial areas undergoing morphogenetic growth, whereas Cyp26A1 message was restricted to the mouth and dental epithelium. Cyp26A1 alone was expressed in the developing neural retina, while both genes were co-expressed in the retinal pigment epithelium. Cyp26B1 was specifically expressed in the developing hindbrain (pons, cerebellum) and forebrain (striatum, hippocampus), with forebrain expression persisting postnatally. In addition, Cyp26B1 was expressed at specific levels of the differentiating upper and lower thoracic spinal cord, adjacent to the cervical and lumbar regions that express the RA-synthesizing enzyme RALDH-2. In viscera, Cyp26B1 transcripts were detected in the developing lung, kidney, spleen, thymus and testis, whereas Cyp26A1 transcripts were found in the diaphragm and outer stomach mesenchyme. Cyp26B1 was also specifically expressed in dermis surrounding the developing hair follicles. Regulated RA metabolism may therefore be required in many developing systems.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Oxigenasas de Función Mixta/genética , Tretinoina/metabolismo , Animales , Desarrollo Óseo/genética , Encéfalo/embriología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Ácido Retinoico 4-Hidroxilasa , Médula Espinal/embriología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Tendones/embriología , Tendones/enzimología , Tendones/crecimiento & desarrollo
19.
Mech Dev ; 56(1-2): 25-39, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-8798145

RESUMEN

Here we report the identification of a novel homeobox gene family Dbx in mouse, which consists of Dbx and Dbx2. The two genes share similar structural organization and are encoded by different chromosomes. The predicted Dbx and Dbx2 proteins share 85% identity in their homeodomain amino acid sequences, but otherwise showed no significant similarity. Characterization of the expression of these two genes in the embryos suggested their role in the development of the CNS. In the forebrain, Dbx is expressed in various regions, while Dbx2 showed a more restricted pattern of expression. In the midbrain, the expression domains of Dbx and Dbx2 overlap along the dorso-lateral wall of the ventricle. In the hindbrain and spinal cord, both genes are expressed in the boundary separating the basal and alar plates, which seems to correspond to the sulcus limitans. Expression of the Dbx/Dbx2 genes is restricted to the ventricular region of the embryonic CNS except for that of Dbx in the septum of the telencephalon. Together these observations indicate possible participation of the members of the Dbx family in regionalization of the CNS. While the expression of Dbx was restricted to the CNS, Dbx2 was also expressed in some of the mesenchymal cells, such as limb buds and tooth germs.


Asunto(s)
Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/biosíntesis , Ratones/genética , Familia de Multigenes , Proteínas del Tejido Nervioso/biosíntesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Mapeo Cromosómico , Cruzamientos Genéticos , ADN Complementario/genética , Extremidades/embriología , Femenino , Proteínas de Homeodominio/genética , Masculino , Mesodermo/metabolismo , Ratones/embriología , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Morfogénesis/genética , Muridae/genética , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Diente/embriología , Diente/metabolismo
20.
Mech Dev ; 54(1): 83-94, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8808408

RESUMEN

Using a differential subtractive hybridization cloning procedure we have recently identified the AP-2.2 gene as a novel early retinoic acid-induced gene in murine P19 embryonal carcinoma cells. We have also shown that the AP-2.2 protein, which is highly related to the AP-2 transcription factor, can activate transcription when bound to an AP-2 consensus binding site [Oulad-Abdelghani et al. (1995) Mol. Cell. Biol., submitted]. We report here the in situ hybridization pattern of expression of AP-2.2 transcripts during mouse embryogenesis. At 7.5 days post-coitum, AP-2.2 transcripts were detected in the boundary region between neural plate and surface ectoderm, as well as in extra-embryonic tissues. By 8.0-8.5 gestational days, AP-2.2 transcripts appeared to be expressed in premigratory and migrating neural crest cells. Over the following days, the AP-2.2 gene displayed region-restricted expression in the facial mesenchyme, especially around the embryonic mouth cavity and the nasal cavities, as well as in the surface ectoderm, nasal and oral epithelia. AP-2.2 RNA was also specifically expressed in the presumptive cortical region of the forebrain vesicles. AP-2.2 transcripts were restricted to the distal mitotic area (the 'progress zone') of the limb buds and of the genital bud. AP-2.2 expression also appeared to be specific for primordial germ cells in the genital ridges. Thus, the AP-2.2 gene is expressed in several embryonic areas whose development can be affected by retinoids, such as the forebrain, face and limb buds.


Asunto(s)
Extremidades/embriología , Cara/embriología , Prosencéfalo/embriología , Retinoides/farmacología , Transactivadores/genética , Animales , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Desarrollo Embrionario y Fetal/efectos de los fármacos , Proteínas Fetales/biosíntesis , Proteínas Fetales/genética , Edad Gestacional , Hibridación in Situ , Mesodermo/metabolismo , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Cresta Neural/citología , Cresta Neural/metabolismo , Prosencéfalo/metabolismo , Transactivadores/biosíntesis , Factor de Transcripción AP-2 , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Sistema Urogenital/embriología , Sistema Urogenital/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA