Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Periodontal Res ; 54(1): 10-26, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30207395

RESUMEN

Nothing is known on the impact of developmental divergence on periodontal tissue regeneration in vertebrate animals. Molecularly, the induction of tooth morphogenesis is highly conserved deploying across animal phyla a constant and reproducible set of gene pathways, which result in morphogenesis of multiple odontode forms and shapes. Genetic mutations positively affect animal speciation via evolving biting and masticatory forces as well as dietary habits selectively imprinted in animal phyla during evolutionary speciation. The geometry of the attachment apparatus of a tooth is important for the interpretation of the induction of cementogenesis with de novo Sharpey's fibres as in thecodonty, ie, a tripartite attachment of alveolar bone, periodontal ligament and cementum. This review addresses the tooth implantation in different animal clades from the fibrous attachment of the Elasmobranch Carcharinus obscurus dusky shark, reviewing the evolution and functional significance of cementum with functionally inserted Sharpey's fibres. In sharks there is a continuous tooth replacement mechanistically supported by the continuously erupting dental lamina. We show that the arching of the continuously erupting dental lamina, a critical step for the selachians' tooth differentiation, is prominently characterized by transforming growth factor-ß3 (TGF-ß3 ) expression not only within the dental lamina but also in cellular condensations in the mesenchymal tissues of the erupting tooth. Such findings indicate the pleiotropic multifaceted activity of a highly conserved mammalian gene across genera, masterminding tooth morphogenesis in both selachians and mammals as well as periodontal tissue induction in the non-human primate Papio ursinus. In P. ursinus, the induction of cementogenesis entails the expression of TGF-ß3 and osteocalcin with fine-tuning and regulation of bone morphogenetic proteins BMP-2 and BMP-7, and upregulation of TGF-ß3 . TGF-ß3 autoinduction and upregulation during the induction of cementogenesis and osteogenesis in P. ursinus provide novel insights into the induction of cementogenesis. It is hypothesized that the evolutionary expression and upregulation of the TGF-ß3 gene may provide the mechanistic insights into the induction of extensive cementogenesis as seen in stem mammals and the induction of trabecular-like cementum formation in mosasaurs' tooth attachment. Aspidin, the precursor of cementum, was reported to appear 310-330 million years ago (Ma) in Odontostraci armoured fish. Studies showed that the differentiation of cementum with inserted Sharpey's fibres is also present in lower amniotes such as Diatectomorpha or Diadectidae, the first herbivorous tetrapods, 323 Ma. In mosasaurs, 168-165 Ma, there is the induction of extensive trabeculation of cementum though nothing is known on the phylogenetic temporo-spatial evolution of cementum before Diadectidae and stem mammals. The large trabeculations of cementum as seen in the attachment of extinct mosasaurs invocates a pleiotropic capacity of cemental growth previously unknown. The appearance of cementum facing a vascularized and innervated periodontal ligament space with Sharpey's fibres inserting on to mineralized cementum provides a multiform pleiotropic masticatory apparatus adapted to multiple biting and lacerating forces as well as finely tuned and controlled forces beyond mastication and deglutition. The remarkable cementogenesis as seen in stem mammals but particularly in mosasaurs with cemental trabeculations across the ligament space invocates the developmental capacity of cementum. The large cemental trabeculations as seen in mosasaurs and the cemental growth in stem mammals, together with regenerating scenarios in P. ursinus with large seams of cellular cementum and cementoid populated by contiguous cementoblasts indicate the continuous molecular cross-talk between cementum, newly formed cementoid matrix, cementoblasts and extracellular matrix soluble molecular signals. This molecular cross-talk may control the biomolecular homeostasis of both cementum and periodontal ligament, including angiogenesis. A further molecular scenario is invocated by the tight and exquisite anatomical relationships between the cementoid surfaces and the newly formed capillaries. The primitiveness of the craniate masticatory mineralized craniofacial apparatus has been controlled by several yet ancestral common genes not lastly the TGF-ß3 gene. The TGF-ß3 might have been responsible for the induction of cementogenesis not only in extant P. ursinus but also in Diatectomorpha and mosasaurs, thus providing continuous evolutionary mechanisms for the induction of tissue morphogenesis across animal phyla for almost a billion years of evolution, epitomizing Nature's parsimony in controlling tissue induction and morphogenesis. TGF-ß receptor II regulates osterix expression via Smad-dependent pathways indicating that TGF-ß signalling acts as an upstream regulator of osterix during cementoblast differentiation. The presence of morphogenetic signals within the cemental matrix capable of inducing bone formation needs now to be assigned: bone induction initiated by extracted and partially purified cemental matrices may be the result of a slow release of embryonic remnants of osteogenic signals required and deployed during cementogenesis. The cementum may thus rule the periodontal ligament space homeostasis, remodelling and repair by releasing sequestered morphogenetic signals that were deployed during embryogenesis.


Asunto(s)
Cementogénesis , Cemento Dental/fisiología , Morfogénesis , Periodoncio/fisiología , Regeneración , Transducción de Señal/genética , Transducción de Señal/fisiología , Diente/crecimiento & desarrollo , Diente/fisiología , Animales , Peces , Humanos , Morfogénesis/genética , Ligamento Periodontal/fisiología , Regeneración/genética , Tiburones , Diente/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Factor de Crecimiento Transformador beta3/fisiología
2.
J Periodontal Res ; 54(1): 33-45, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30264516

RESUMEN

BACKGROUND AND OBJECTIVE: The potential benefit of using hyaluronan (HA) in reconstructive periodontal surgery is still a matter of debate. The aim of the present study was to evaluate the effects of two HA formulations on human oral fibroblasts involved in soft tissue wound healing/regeneration. MATERIAL AND METHODS: Metabolic, proliferative and migratory abilities of primary human palatal and gingival fibroblasts were examined upon HA treatment. To uncover the mechanisms whereby HA influences cellular behavior, wound healing-related gene expression and activation of signaling kinases were analyzed by qRT-PCR and immunoblotting, respectively. RESULTS: The investigated HA formulations maintained the viability of oral fibroblasts and increased their proliferative and migratory abilities. They enhanced expression of genes encoding type III collagen and transforming growth factor-ß3, characteristic of scarless wound healing. The HAs upregulated the expression of genes encoding pro-proliferative, pro-migratory, and pro-inflammatory factors, with only a moderate effect on the latter in gingival fibroblasts. In palatal but not gingival fibroblasts, an indirect effect of HA on the expression of matrix metalloproteinases 2 and 3 was detected, potentially exerted through induction of pro-inflammatory cytokines. Finally, our data pointed on Akt, Erk1/2 and p38 as the signaling molecules whereby the HAs exert their effects on oral fibroblasts. CONCLUSION: Both investigated HA formulations are biocompatible and enhance the proliferative, migratory and wound healing properties of cell types involved in soft tissue wound healing following regenerative periodontal surgery. Our data further suggest that in gingival tissues, the HAs are not likely to impair the healing process by prolonging inflammation or causing excessive MMP expression at the repair site.


Asunto(s)
Tejido Conectivo/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Ácido Hialurónico/administración & dosificación , Ácido Hialurónico/farmacología , Regeneración/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Composición de Medicamentos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Encía/citología , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Hueso Paladar/citología , Endodoncia Regenerativa , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/metabolismo , Cicatrización de Heridas/genética
3.
J Biol Chem ; 292(44): 18091-18097, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28912269

RESUMEN

Glycoprotein A repetitions predominant (GARP) (encoded by the Lrrc32 gene) plays important roles in cell-surface docking and activation of TGFß. However, GARP's role in organ development in mammalian systems is unclear. To determine the function of GARP in vivo, we generated a GARP KO mouse model. Unexpectedly, the GARP KO mice died within 24 h after birth and exhibited defective palatogenesis without apparent abnormalities in other major organs. Furthermore, we observed decreased apoptosis and SMAD2 phosphorylation in the medial edge epithelial cells of the palatal shelf of GARP KO embryos at embryonic day 14.5 (E14.5), indicating a defect in the TGFß signaling pathway in the GARP-null developing palates. Of note, the failure to develop the secondary palate and concurrent reduction of SMAD phosphorylation without other defects in GARP KO mice phenocopied TGFß3 KO mice, although GARP has not been suggested previously to interact with TGFß3. We found that GARP and TGFß3 co-localize in medial edge epithelial cells at E14.5. In vitro studies confirmed that GARP and TGFß3 directly interact and that GARP is indispensable for the surface expression of membrane-associated latent TGFß3. Our findings indicate that GARP is essential for normal morphogenesis of the palate and demonstrate that GARP plays a crucial role in regulating TGFß3 signaling during embryogenesis. In conclusion, we have uncovered a novel function of GARP in positively regulating TGFß3 activation and function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Organogénesis , Hueso Paladar/metabolismo , Procesamiento Proteico-Postraduccional , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta3/agonistas , Animales , Animales Recién Nacidos , Apoptosis , Fisura del Paladar/embriología , Fisura del Paladar/metabolismo , Fisura del Paladar/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Heterocigoto , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones Noqueados , Hueso Paladar/anomalías , Hueso Paladar/embriología , Hueso Paladar/patología , Fosforilación , Embarazo , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta3/química , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/metabolismo
4.
Dev Biol ; 398(2): 231-41, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25523394

RESUMEN

Transforming growth factor-beta3 (TGF-ß3) plays a critical role in palatal epithelial cells by inducing palatal epithelial fusion, failure of which results in cleft palate, one of the most common birth defects in humans. Recent studies have shown that Smad-dependent and Smad-independent pathways work redundantly to transduce TGF-ß3 signaling in palatal epithelial cells. However, detailed mechanisms by which this signaling is mediated still remain to be elucidated. Here we show that TGF-ß activated kinase-1 (Tak1) and Smad4 interact genetically in palatal epithelial fusion. While simultaneous abrogation of both Tak1 and Smad4 in palatal epithelial cells resulted in characteristic defects in the anterior and posterior secondary palate, these phenotypes were less severe than those seen in the corresponding Tgfb3 mutants. Moreover, our results demonstrate that Trim33, a novel chromatin reader and regulator of TGF-ß signaling, cooperates with Smad4 during palatogenesis. Unlike the epithelium-specific Smad4 mutants, epithelium-specific Tak1:Smad4- and Trim33:Smad4-double mutants display reduced expression of Mmp13 in palatal medial edge epithelial cells, suggesting that both of these redundant mechanisms are required for appropriate TGF-ß signal transduction. Moreover, we show that inactivation of Tak1 in Trim33:Smad4 double conditional knockouts leads to the palatal phenotypes which are identical to those seen in epithelium-specific Tgfb3 mutants. To conclude, our data reveal added complexity in TGF-ß signaling during palatogenesis and demonstrate that functionally redundant pathways involving Smad4, Tak1 and Trim33 regulate palatal epithelial fusion.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Apoptosis/genética , Fusión Celular , Proliferación Celular , Cruzamientos Genéticos , Embrión de Mamíferos/metabolismo , Activación Enzimática , Células Epiteliales/metabolismo , Epitelio/metabolismo , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones Noqueados , Modelos Biológicos , Mutación/genética , Especificidad de Órganos , Hueso Paladar/anomalías , Hueso Paladar/enzimología
5.
J Cell Physiol ; 230(6): 1212-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25358290

RESUMEN

The periderm is a flat layer of epithelium created during embryonic development. During palatogenesis, the periderm forms a protective layer against premature adhesion of the oral epithelia, including the palate. However, the periderm must be removed in order for the medial edge epithelia (MEE) to properly adhere and form a palatal seam. Improper periderm removal results in a cleft palate. Although the timing of transforming growth factor ß3 (TGFß3) expression in the MEE coincides with periderm degeneration, its role in periderm desquamation is not known. Interestingly, murine models of knockout (-/-) TGFß3, interferon regulatory factor 6 (IRF6) (-/-), and truncated p63 (ΔNp63) (-/-) are born with palatal clefts because of failure of the palatal shelves to adhere, suggesting that these genes regulate palatal epithelial differentiation. However, despite having similar phenotypes in null mouse models, no studies have analyzed the possible association between the TGFß3 signaling cascade and the IRF6/ΔNp63 genes during palate development. Recent studies indicate that regulation of ΔNp63, which depends on IRF6, facilitates epithelial differentiation. We performed biochemical analysis, gene activity and protein expression assays with palatal sections of TGFß3 (-/-), ΔNp63 (-/-), and wild-type (WT) embryos, and primary MEE cells from WT palates to analyze the association between TGFß3 and IRF6/ΔNp63. Our results suggest that periderm degeneration depends on functional TGFß3 signaling to repress ΔNp63, thereby coordinating periderm desquamation. Cleft palate occurs in TGFß3 (-/-) because of inadequate periderm removal that impedes palatal seam formation, while cleft palate occurs in ΔNp63 (-/-) palates because of premature fusion.


Asunto(s)
Células Epiteliales/metabolismo , Hueso Paladar/metabolismo , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Epitelio/metabolismo , Epitelio/patología , Factores Reguladores del Interferón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Hueso Paladar/embriología , Fosfoproteínas/deficiencia , Transducción de Señal/fisiología , Transactivadores/deficiencia
6.
J Cell Physiol ; 230(12): 2961-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25893671

RESUMEN

The mammalian secondary palate forms from shelves of epithelia-covered mesenchyme that meet at midline and fuse. The midline epithelial seam (MES) is thought to degrade by apoptosis, epithelial-to-mesenchymal transition (EMT), or both. Failure to degrade the MES blocks fusion and causes cleft palate. It was previously thought that transforming growth factor ß3 (Tgfß3) is required to initiate fusion. Members of the Eph tyrosine kinase receptor family and their membrane-bound ephrin ligands are expressed on the MES. We demonstrated that treatment of mouse palates with recombinant EphB2/Fc to activate ephrin reverse signaling (where the ephrin acts as a receptor and transduces signals from its cytodomain) was sufficient to cause mouse palatal fusion when Tgfß3 signaling was blocked by an antibody against Tgfß3 or by an inhibitor of the TgfßrI serine/threonine receptor kinase. Cultured palatal epithelial cells traded their expression of epithelial cell markers for that of mesenchymal cells and became motile after treatment with EphB2/Fc. They concurrently increased their expression of the EMT-associated transcription factors Snail, Sip1, and Twist1. EphB2/Fc did not cause apoptosis in these cells. These data reveal that ephrin reverse signaling directs palatal fusion in mammals through a mechanism that involves EMT but not apoptosis and activates a gene expression program not previously associated with ephrin reverse signaling.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Efrina-B2/farmacología , Efrinas/metabolismo , Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Hueso Paladar/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Morfogénesis , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Proteínas Recombinantes/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta3/antagonistas & inhibidores
7.
Dev Dyn ; 243(12): 1536-43, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25104574

RESUMEN

BACKGROUND: Transforming growth factor-ß3 (TGF-ß3) plays a central role in mediating secondary palate fusion along the facial midline. However, the mechanisms by which TGF-ß3 functions during secondary palate fusion are still poorly understood. RESULTS: We found that mouse cytokeratin 6α and 17 mRNAs were expressed exclusively in the palate medial edge epithelium on embryonic day 14.5, and this expression was completely abolished in Tgf-ß3 mutant embryos. In contrast, we found that Jagged2 was initially expressed throughout the palate epithelium, but was specifically down-regulated in the medial edge epithelium during palatal fusion. Jagged2 down-regulation was regulated by TGF-ß3, since Jagged2 was persistently expressed in palatal medial edge epithelium in Tgf-ß3 null mutant embryos. Moreover, addition of DAPT, a specific inhibitor of Notch signaling, partially rescued the fusion defects in Tgf-ß3 null mutant palatal shelves. CONCLUSIONS: Based on these results, together with the previous study indicating that the loss of Jagged2 function promotes embryonic oral epithelial fusion, we concluded that TGF-ß3 mediates palate fusion in part by down-regulating Jagged2 expression in palatal medial edge epithelium. In addition, cytokeratin 6α and 17 are two TGF-ß3 downstream target genes in palate medial edge epithelium differentiation.


Asunto(s)
Embrión de Mamíferos/embriología , Mucosa Bucal/embriología , Hueso Paladar/embriología , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Embrión de Mamíferos/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Queratina-6/biosíntesis , Queratina-6/genética , Queratinas/biosíntesis , Queratinas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Hueso Paladar/citología , Proteínas Serrate-Jagged , Factor de Crecimiento Transformador beta3/genética
8.
J Biol Chem ; 288(44): 32074-92, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24056369

RESUMEN

Three homologues of TGF-ß exist in mammals as follows: TGF-ß1, TGF-ß2, and TGF-ß3. All three proteins share high homology in their amino acid sequence, yet each TGF-ß isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-ß proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-ß knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-ß1 ligand with a sequence from TGF-ß3 using targeted recombination to create chimeric TGF-ß1/3 knock-in mice (TGF-ß1(Lß3/Lß3)). In the TGF-ß1(Lß3/Lß3) mouse, localization and activation still occur through the TGF-ß1 latent associated peptide, but cell signaling is triggered through the TGF-ß3 ligand that binds to TGF-ß receptors. Unlike TGF-ß1(-/-) mice, the TGF-ß1(Lß3/Lß3) mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-ß3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-ß1 deficiency. However, the TGF-ß1(Lß3/Lß3) mice have a shortened life span and display tooth and bone defects, indicating that the TGF-ß homologues are not completely interchangeable. Remarkably, the TGF-ß1(Lß3/Lß3) mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-ß isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-ß pathway in human disease.


Asunto(s)
Glucosa/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Células COS , Chlorocebus aethiops , Técnicas de Sustitución del Gen , Glucosa/genética , Células Hep G2 , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Neovascularización Fisiológica/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Porcinos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta3/genética
9.
Biotechnol Bioeng ; 111(8): 1686-98, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25097913

RESUMEN

Well documented limitations associated with primary chondrocytes for cartilage tissue engineering applications have led to increased interest in the use of multi-potent stem/progenitor cells. The objective of this study was to firstly investigate if infrapatellar fat pad-derived stem cells (FPSCs) could be used to engineer cartilage-like tissues through a self-assembly (SA) process, and secondly to compare the properties of such grafts to those engineered by agarose hydrogel encapsulation (AE). Self-assembled cartilaginous tissues were first engineered by geometrically confining FPSCs on tissue culture plastic, and then either continuously or transiently supplementing these constructs with transforming growth factor-b3 (TGF-b3). Transient supplementation with TGF-b3 (for the first 21 days of culture) enhanced the development of self-assembled grafts, with sGAG accumulation reaching levels of 8.4 ± 1.5% w/w after 6 weeks of culture. While overall levels of matrix synthesis were higher with AE compared to SA, when normalized to tissue wet weight, ECM accumulation was significantly greater in the lighter SA constructs. A potential drawback with the SA approach on tissue culture plastic was that it often led to the development of contracted,geometrically inconsistent tissues.We therefore next explored if SA on polyethylene terephthalate (PET) transwell membranes would lead to the development of more morphologically stable and homogenous tissues. At high seeding densities, SA on such transwell membranes led to the formation of geometrically uniform constructs that underwent minimal contraction during culture. In conclusion, the results of this study demonstrate the potential of SA using FPSCs for cartilage tissue engineering, with grafts attaining relatively high levels of sGAG content within clinically relevant timeframes. Such an approach is easily scalable and may lend itself to treating large, full thickness cartilage defects.


Asunto(s)
Tejido Adiposo/citología , Cartílago Articular/citología , Células Madre/citología , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/metabolismo , Cartílago Articular/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Sefarosa/metabolismo , Porcinos , Factor de Crecimiento Transformador beta3/metabolismo
10.
J Surg Res ; 187(2): 699-711, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24332552

RESUMEN

BACKGROUND: Adhesions commonly appear in patients after abdominal surgery, with considerable individual variation in adhesion composition and severity of the repair process. Here, we address the influence of transforming growth factor (TGF)-ß3 and betaglycan in this response, in relation to TGF-ß1, in an adhesiogenic rabbit model. MATERIALS AND METHODS: Omental adhesions were recovered 3, 7, 14, and 90 d after the implantation of a polypropylene mesh on the parietal peritoneum in New Zealand White rabbits. Omentum from nonoperated animals served as control. Tissue specimens were examined for TGF-ß3 and TGF-ß1 (Western blotting, reverse transcription-polymerase chain reaction), and TGF-ß1:TGF-ß3 messenger RNA and protein expression ratios were analyzed. Immunohistochemical detection of TGF-ß3 and betaglycan was performed. RESULTS: Injury to the omentum led to mobilization of TGF-ß3 and betaglycan-expressing cells from milky spots. Fibrous zones in adhesions were simultaneous to the presence of TGF-ß1 and the membrane-bound form of betaglycan (7-d adhesions), whereas soluble betaglycan appeared in TGF-ß1-positive areas showing limited fibrosis (3-d adhesions). The elevated expression of TGF-ß3 concurrent with the presence of membrane-bound form of betaglycan was observed in zones of adipose regeneration (14-d adhesions), whereas zones of fibrous consistency were negative for TGF-ß3. CONCLUSIONS: Milky spots on the omentum contain inflammatory/immune cells positive for TGF-ß3, TGF-ß1, and betaglycan, playing a role in the damaged omentum repair. Our observations support the contribution of TGF-ß3 to tissue repair through adipose tissue regeneration and the profibrotic role of TGF-ß1 and suggest that these effects on the local wound repair response could be driven by the expression of betaglycan in its soluble or membrane-bound form.


Asunto(s)
Epiplón/lesiones , Epiplón/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Adherencias Tisulares/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Cicatrización de Heridas/fisiología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Tejido Adiposo Blanco/ultraestructura , Animales , Modelos Animales de Enfermedad , Masculino , Microscopía Electrónica de Transmisión , Epiplón/patología , Epiplón/cirugía , Peritoneo/lesiones , Peritoneo/metabolismo , Peritoneo/cirugía , Polipropilenos/efectos adversos , Proteoglicanos/genética , ARN Mensajero/metabolismo , Conejos , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal/fisiología , Mallas Quirúrgicas/efectos adversos , Adherencias Tisulares/patología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta3/genética
11.
Birth Defects Res B Dev Reprod Toxicol ; 101(6): 403-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25477235

RESUMEN

Mesenchymal-cell proliferation is the main process in shelf outgrowth. Both all-trans-retinoic acid (atRA) and transforming growth factor-ß3 (TGF-ß3) play an important role in mouse embryonic palate mesenchymal (MEPM) cell proliferation. In the present study, we investigated the crosstalk between RA and TGF-ß signaling in MEPM-cell proliferation. We found that atRA inhibited MEPM-cell proliferation by downregulating TGF-ß/Smad signaling and that TGF-ß3 treatment was able to antagonize RA signaling. Transforming growth-interacting factor (TGIF) is a transcriptional repressor that suppresses both TGF-ß- and retinoid-driven gene transcription. Furthermore, we investigated the role of TGIF in the interaction between both TGF-ß and RA signaling in MEPM-cell proliferation. The results showed that both atRA and TGF-ß3 significantly increased the expression level of TGIF, and TGIF mediated the negative interaction between TGF-ß and RA signaling pathways, which depended on TGIF binding to Smad2 or RARß (RA receptor beta). Moreover, after deletion of TGIF, both the effects of atRA on TGF-ß-dependent protein expression and the effects of TGF-ß on RA-dependent protein expression were lost. So we conclude that there is a negative functional interplay of RA and TGF-ß signaling mediated by TGIF to modulate MEPM-cell proliferation.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Hueso Paladar/embriología , Proteínas Represoras/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Tretinoina/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta3/farmacología
12.
Adv Healthc Mater ; 13(19): e2400529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38441411

RESUMEN

Effective tendon regeneration following injury is contingent on appropriate differentiation of recruited cells and deposition of mature, aligned, collagenous extracellular matrix that can withstand the extreme mechanical demands placed on the tissue. As such, myriad biomaterial approaches have been explored to provide biochemical and physical cues that encourage tenogenesis and template aligned matrix deposition in lieu of dysfunctional scar tissue formation. Fiber-reinforced hydrogels present an ideal biomaterial system toward this end given their transdermal injectability, tunable stiffness over a range amenable to tenogenic differentiation of progenitors, and capacity for modular inclusion of biochemical cues. Here, tunable and modular, fiber-reinforced, synthetic hydrogels are employed to elucidate salient microenvironmental determinants of tenogenesis and aligned collagen deposition by tendon progenitor cells. Transforming growth factor ß3 drives a cell fate switch toward pro-regenerative or pro-fibrotic phenotypes, which can be biased toward the former by culture in softer microenvironments or inhibition of the RhoA/ROCK activity. Furthermore, studies demonstrate that topographical anisotropy in fiber-reinforced hydrogels critically mediates the alignment of de novo collagen fibrils, reflecting native tendon architecture. These findings inform the design of cell-free, injectable, synthetic hydrogels for tendon tissue regeneration and, likely, that of a range of load-bearing connective tissues.


Asunto(s)
Colágeno , Hidrogeles , Tendones , Ingeniería de Tejidos , Hidrogeles/química , Hidrogeles/farmacología , Colágeno/química , Tendones/metabolismo , Tendones/efectos de los fármacos , Animales , Ingeniería de Tejidos/métodos , Matriz Extracelular/metabolismo , Andamios del Tejido/química , Diferenciación Celular/efectos de los fármacos , Factor de Crecimiento Transformador beta3/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración/efectos de los fármacos
13.
Nanomedicine (Lond) ; 19(18-20): 1675-1688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39254481

RESUMEN

Aim: RADA16-PLGA composite scaffolds constructed with simultaneous loading of BMSCs and TGF-ß3 and explored their ability for chondrogenic differentiation in vitro.Methods: The performance of the composite scaffolds is assessed by rheometer assay, electron microscopic structural observation and ELISA release assay. The biosafety of the composite scaffolds is assessed by cytocompatibility assay and cell migration ability. The chondrogenic differentiation ability of composite scaffolds is evaluated by Alisin blue staining, PCR and immunofluorescence staining.Results: The composite scaffold has a good ECM-like structure, the ability to control the release of TGF-ß3 and good biocompatibility. More importantly, the composite scaffolds can induce the differentiation of BMSCs to chondrocytes.Conclusion: Composite scaffolds are expected to enhance the endogenous NP repair process.


[Box: see text].


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Células Madre Mesenquimatosas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Factor de Crecimiento Transformador beta3 , Factor de Crecimiento Transformador beta3/farmacología , Factor de Crecimiento Transformador beta3/metabolismo , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Andamios del Tejido/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Animales , Humanos , Ingeniería de Tejidos/métodos , Células Cultivadas , Concentración de Iones de Hidrógeno , Ácido Poliglicólico/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanopartículas/química
14.
Bioprocess Biosyst Eng ; 36(3): 317-24, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22802044

RESUMEN

Gelatin-/chitosan-/hyaluronan-based biomaterials are used in tissue engineering as cell scaffolds. Three gamma radiation doses (1, 10 and 25 kGy) were applied to scaffolds for sterilization. Microstructural changes of the irradiated polymers were evaluated by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A dose of 25 kGy produced a rough microstructure with a reduction of the porosity (from 99 to 96 %) and pore size (from 160 to 123 µm). Radiation also modified the glass transition temperature between 31.2 and 42.1 °C (1 and 25 kGy respectively). Human skin cells cultivated on scaffolds irradiated with 10 and 25 kGy proliferated at 48 h and secreted transforming growth factor ß3 (TGF-ß3). Doses of 0 kGy (non-irradiated) or 1 kGy did not stimulate TGF-ß3 secretion or cell proliferation. The specific growth rate and lactate production increased proportionally to radiation dose. The use of an appropriate radiation dose improves the cell scaffold properties of biomaterials.


Asunto(s)
Materiales Biocompatibles/química , Piel/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Rastreo Diferencial de Calorimetría , Proliferación Celular/efectos de la radiación , Quitosano/química , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Gelatina/química , Humanos , Ácido Hialurónico/química , Lactatos/metabolismo , Microscopía Electrónica de Rastreo , Porosidad , Temperatura , Factor de Crecimiento Transformador beta3/metabolismo
15.
J Biomed Mater Res A ; 111(8): 1135-1150, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36708060

RESUMEN

Cartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG-mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor-beta3 (TGF-ß3) sequestration, as measured by rate of association, was higher for sulfated cellulose-containing scaffolds as compared to native GAGs. In addition, TGF-ß3 sequestration and retention over time was highest for NaCS-containing scaffolds. Sulfated cellulose-containing scaffolds loaded with TGF-ß3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS-containing scaffolds loaded with TGF-ß3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF-ß3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF-ß receptor (TGF- ßRI)-phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF-ß3-induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.


Asunto(s)
Cartílago Articular , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta3/farmacología , Factor de Crecimiento Transformador beta3/metabolismo , Condrogénesis , Andamios del Tejido , Cartílago Articular/metabolismo , Celulosa/farmacología , Sulfatos de Condroitina/farmacología
16.
J Cell Biochem ; 113(10): 3069-85, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22573578

RESUMEN

During palatogenesis, the palatal mesenchyme undergoes increased cell proliferation resulting in palatal growth, elevation and fusion of the two palatal shelves. Interestingly, the palatal mesenchyme expresses all three transforming growth factor (TGF) ß isoforms (1, 2, and 3) throughout these steps of palatogenesis. However, the role of TGFß in promoting proliferation of palatal mesenchymal cells has never been explored. The purpose of this study was to identify the effect of TGFß on human embryonic palatal mesenchymal (HEPM) cell proliferation. Our results showed that all isoforms of TGFß, especially TGFß3, increased HEPM cell proliferation by up-regulating the expression of cyclins and cyclin-dependent kinases as well as c-Myc oncogene. TGFß activated both Smad-dependent and Smad-independent pathways to induce c-Myc gene expression. Furthermore, TBE1 is the only functional Smad binding element (SBE) in the c-Myc promoter and Smad4, activated by TGFß, binds to the TBE1 to induce c-Myc gene activity. We conclude that HEPM proliferation is manifested by the induction of c-Myc in response to TGFß signaling, which is essential for complete palatal confluency. Our data highlights the potential role of TGFß as a therapeutic molecule to correct cleft palate by promoting growth.


Asunto(s)
Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Hueso Paladar/embriología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Factor de Crecimiento Transformador beta3/farmacología , Animales , Apoptosis , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Humanos , Masculino , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Hueso Paladar/citología , Hueso Paladar/efectos de los fármacos , Hueso Paladar/metabolismo , Embarazo , Regiones Promotoras Genéticas , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal , Proteína Smad4/genética , Proteína Smad4/metabolismo , Transfección , Factor de Crecimiento Transformador beta3/metabolismo
17.
Dev Growth Differ ; 54(6): 633-48, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22775504

RESUMEN

Transforming growth factor (TGFß)3 is essential for palate development, particularly during the late phase of palatogenesis when the disintegration of the palatal medial edge seam (MES) occurs resulting in mesenchymal confluence. The MES is composed of medial-edge epithelium (MEE) of opposite palatal shelves; its complete disintegration is essential for mediating correct craniofacial morphogenesis. This phenomenon is initiated by TGFß3 upon adherence of opposing palatal shelves, and subsequently epithelial-mesenchymal transition (EMT) instigates the loss of E-Cadherin, causing the MES to break into small epithelial islands forming confluent palatal mesenchyme; however, apoptosis and cell migration or in combination of all are other established mechanisms of seam disintegration. To investigate the molecular mechanisms that cause this E-Cadherin loss, we isolated and cultured murine embryonic primary MES cells from adhered palates and employed several biological approaches to explore the mechanism by which TGFß3 facilitates palatal seam disintegration. Here, we demonstrate that TGFß3 signals by activating both Smad-dependent and Smad-independent pathways. However, activation of the two most common EMT related transcription factors, Snail and SIP, was facilitated by Smad-independent pathways, contrary to the commonly accepted Smad-dependent pathway. Finally, we provide the first evidence that TGFß3-activated Snail and SIP1, combined with Smad4, bind to the E-Cadherin promoter to repress its transcription in response to TGFß3 signaling. These results suggest that TGFß3 uses multiple pathways to activate Snail and SIP1 and these transcription factors repress the cell-cell adhesion protein, E-Cadherin, to induce palatal epithelial seam EMT. Manipulation and intervention of the pathways stimulated by TGFß3 during palate development may have a significant therapeutic potential.


Asunto(s)
Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Hueso Paladar/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Apoptosis , Cadherinas/metabolismo , Movimiento Celular , Células Cultivadas , Epitelio/metabolismo , Epitelio/fisiología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Mesodermo/fisiología , Ratones , Mutagénesis Sitio-Dirigida , Hueso Paladar/citología , Embarazo , Cultivo Primario de Células , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Activación Transcripcional , Factor de Crecimiento Transformador beta3/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
18.
Dev Dyn ; 240(2): 357-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21246652

RESUMEN

Secondary palate fusion requires adhesion and epithelial-to-mesenchymal transition (EMT) of the epithelial layers on opposing palatal shelves. This EMT requires transforming growth factor ß3 (TGFß3), and its failure results in cleft palate. Ephrins, and their receptors, the Ephs, are responsible for migration, adhesion, and midline closure events throughout development. Ephrins can also act as signal-transducing receptors in these processes, with the Ephs serving as ligands (termed "reverse" signaling). We found that activation of ephrin reverse signaling in chicken palates induced fusion in the absence of TGFß3, and that PI3K inhibition abrogated this effect. Further, blockage of reverse signaling inhibited TGFß3-induced fusion in the chicken and natural fusion in the mouse. Thus, ephrin reverse signaling is necessary and sufficient to induce palate fusion independent of TGFß3. These data describe both a novel role for ephrins in palate morphogenesis, and a previously unknown mechanism of ephrin signaling.


Asunto(s)
Efrinas/metabolismo , Hueso Paladar/embriología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Embrión de Pollo , Fisura del Paladar/etiología , Fisura del Paladar/fisiopatología , Efrinas/genética , Transición Epitelial-Mesenquimal/fisiología , Humanos , Ratones , Hueso Paladar/citología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Factor de Crecimiento Transformador beta3/metabolismo
19.
Biomater Adv ; 134: 112721, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35581061

RESUMEN

Addressing osteochondral defects, the objective of current study was to synthesize bilayered hydrogel, where the cartilage layer was formed by alginate (Alg)-polyacrylamide (PAAm) with and without the addition of TGF-ß3 and bone layer by laponite XLS/Alg-PAAm and characterize by in vitro and in vivo experiments. Exceeding the mechanical strength of Alg-PAAm (32.95 ± 1.23 kPa) and XLS based (317.5 ± 21.72 kPa) hydrogels, XLS/Alg-PAAm hydrogel (469.7 ± 6.1 kPa) activated macrophages towards M2 phenotype and stimulated the expression of anti-inflammatory factors. The addition of TGF-ß3 accelerated transition of macrophage polarization, especially between day 4 and 7. The expression levels of M1-related genes such as CD80, iNOS and TNF-α decreased gradually after day 4, reaching lowest values at day 13, whereas the expression levels of M2-related genes, CD206, Arg1 and STAT6 significantly increased promoting M2 macrophage polarization, which might be associated with accelerated bone repair. Moreover, bilayer structure exhibited a better cell viability as well as repairment thorough the XLS contents. In vivo histological examinations verified the significant surface regularity and hyaline like tissue formation employment, along with synchronized degradation profile of the hydrogel with tissue healing at the end of 12 weeks. A mechanically durable, biocompatible and immunocompatible hydrogel was formulated to be utilized in bone-cartilage engineering applications.


Asunto(s)
Alginatos , Ingeniería de Tejidos , Resinas Acrílicas , Alginatos/farmacología , Condrocitos , Hidrogeles/química , Macrófagos , Silicatos , Factor de Crecimiento Transformador beta3/metabolismo
20.
Tissue Eng Part C Methods ; 28(10): 501-510, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36082992

RESUMEN

Transforming growth factor-beta 1 (TGF-ß1) has been reported to promote chondrogenic differentiation and proliferation in the multipotent stromal cell (MSCs), and the transforming growth factor-beta 3 (TGF-ß3) tends to be exclusively in promoting cell differentiation alone. The objective of this study was to determine the effect of TGF-ß1 and -ß3 on the MSCs chondrogenic differentiation on the poly (vinyl alcohol)-chitosan-poly (ethylene glycol) (PVA-NOCC-PEG) scaffold, compared with that of monolayer and pellet cultures. In this study, P2 rabbit bone marrow-derived MSCs were seeded either on the untreated six-well plate (for monolayer culture) or onto the PVA-NOCC-PEG scaffold or cultured as a pellet culture. The cultures were maintained in a chemically defined serum-free medium supplemented with 10 ng/mL of either TGF-ß1 or TGF-ß3. Cell viability assay, biochemical assay, and real-time polymerase chain reaction were performed to determine the net effect of cell proliferation and chondrogenic differentiation of each of the growth factors. The results showed that the PVA-NOCC-PEG scaffold enhanced MSCs cell proliferation from day 12 to 30 (p < 0.05); however, no significant differences were observed in the cell proliferation between the cultures supplemented with or without TGF-ß1 and TGF-ß3 (p > 0.05). In terms of chondrogenic differentiation, the PVA-NOCC-PEG scaffold augmented the GAGs secretion in MSCs and the mRNA expression levels of Sox9, Col2a1, Acan, and Comp were elevated (p < 0.05). However, there was no significant difference between both the TGF-ß1 and TGF-ß3-treated groups (p > 0.05). In conclusion, TGF-ß1 and TGF-ß3 enhanced the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold; however, there was no significant difference between the effect of TGF-ß1 and TGF-ß3. Impact statement Transforming growth factor-beta (TGF-ß) superfamily members is a key requirement for the in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, the effects of TGF-ß1 and -ß3 on MSC chondrogenic differentiation and proliferation on a novel three-dimensional scaffold, the poly(vinyl alcohol)-chitosan-poly(ethylene glycol) (PVA-NOCC-PEG) scaffold, was evaluated. In this study, the results showed both TGF-ß1 and TGF-ß3 can enhance the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Animales , Conejos , Factor de Crecimiento Transformador beta3/metabolismo , Factor de Crecimiento Transformador beta3/farmacología , Alcohol Polivinílico/farmacología , Alcohol Polivinílico/metabolismo , Quitosano/farmacología , Quitosano/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Polietilenglicoles/farmacología , Condrogénesis , Diferenciación Celular , Factor de Crecimiento Transformador beta/farmacología , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA