Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Endod ; 43(4): 602-608, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28190586

RESUMEN

INTRODUCTION: Recently, we have shown that tissue hypoxia stimulates the progression of periapical lesions by up-regulating glycolysis-dependent apoptosis of osteoblasts. Other facets of hypoxia-induced metabolic reprogramming in disease pathogenesis require further investigation. In this study, we examined the connection between hypoxia-augmented glutamine catabolism in osteoblasts and the development of periapical lesions. METHODS: Primary human osteoblasts were cultured under hypoxia. The expression of glutaminase 1 (GLS1) was examined using Western blot analysis. The production of glutamate was measured by colorimetric assay. Knockdown of GLS1 was performed with small interfering RNA technology. C-C motif chemokine ligand 2 (CCL2) secretion and chemotaxis of J774 macrophages were examined by enzyme-linked immunosorbent assay and transwell migration assay, respectively. In a rat model of induced periapical lesions, the relations between disease progression and osteoblastic expression of GLS1 or macrophage recruitment were studied. RESULTS: Hypoxia enhanced GLS1 expression and subsequent glutamate production in osteoblasts. Glutamate induced chemoattraction of macrophages by osteoblasts through up-regulation of CCL2 synthesis. Hypoxia promoted CCL2 secretion and macrophage recruitment through augmentation of glutaminolysis. Knockdown of GLS1 abolished hypoxia-induced effects. In rat periapical lesions, progressive bone resorption was significantly related to elevated GLS1 expression in osteoblasts and increased macrophage recruitment. CONCLUSIONS: In addition to the rise in glycolytic activity, the progression of periapical lesions is also associated with enhanced glutamine catabolism in osteoblasts. GLS1 may be a potential therapeutic target in the management of periapical lesions.


Asunto(s)
Glutaminasa/metabolismo , Macrófagos/fisiología , Osteoblastos/enzimología , Periodontitis Periapical/patología , Animales , Western Blotting , Células Cultivadas , Progresión de la Enfermedad , Glutaminasa/fisiología , Glutamina/metabolismo , Humanos , Osteoblastos/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA