RESUMEN
Roundup® branded herbicides contain glyphosate, a surfactant system and water. One of the surfactants used is polyethoxylated tallow amine (POE-T). A toxicology dataset has been developed to derive the most representative points of departure for human health risk assessments. Concentrated POE-T was very irritating to skin, corrosive to eyes, and sensitizing to skin. The irritation and sensitization potential of POE-T diminishes significantly upon dilution with water. Repeated dosing of rats with POE-T produced gastrointestinal effects but no systemic effect on organ systems. POE-T was not genotoxic and had no effect on embryo-fetal development or reproduction. The occupational risk assessment of POE- T for the agricultural use of glyphosate products has demonstrated that margins of exposure (MOEs) are 2517 and 100,000 for maximum and geometric mean dermal exposures, respectively. In the food risk assessment for relevant agricultural uses, the range of MOEs for consumption of foods from plant and animal origin were 330 to 2909. MOEs ≥100 are generally considered to be of no toxicological concern. Based on the results of the occupational and food risk assessments, it is concluded that there are no significant human health issues associated with the use of POE-T as a surfactant in glyphosate products.
Asunto(s)
Aminas/toxicidad , Grasas/toxicidad , Irritantes/toxicidad , Polietilenglicoles/toxicidad , Tensoactivos/toxicidad , Administración por Inhalación , Administración Oral , Animales , Exposición Dietética , Perros , Contaminación de Alimentos , Glicina/análogos & derivados , Cobayas , Herbicidas , Humanos , Exposición por Inhalación , Ratones , Conejos , Ratas , GlifosatoRESUMEN
The responses of five North American frog species that were exposed in an aqueous system to the original formulation of Roundup were compared. Carefully designed and un-confounded laboratory toxicity tests are crucial for accurate assessment of potential risks from the original formulation of Roundup to North American amphibians in aquatic environments. The formulated mixture of this herbicide as well as its components, isopropylamine (IPA) salt of glyphosate and the surfactant MON 0818 (containing polyethoxylated tallowamine (POEA)) were separately tested in 96 h acute toxicity tests with Gosner stage 25 larval anurans. Rana pipiens, R. clamitans, R. catesbeiana, Bufo fowleri, and Hyla chrysoscelis were reared from egg masses and exposed to a series of 11 concentrations of the original formulation of Roundup herbicide, nine concentrations of MON 0818 and three concentrations of IPA salt of glyphosate in static (non-renewal) aqueous laboratory tests. LC50 values are expressed as glyphosate acid equivalents (ae) or as mg/L for MON 0818 concentrations for comparison between the formulation and components. R. pipiens was the most sensitive of five species with 96 h-LC50 values for formulation tests, for the five species, ranging from 1.80 to 4.22 mg ae/L, and MON 0818 exposures with 96 h-LC50 values ranging from 0.68 to 1.32 mg/L. No significant mortality was observed during exposures of 96 h for any of the five species exposed to glyphosate IPA salt at concentrations up to 100 times the predicted environmental concentration (PEC). These results agree with previous studies which have noted that the surfactant MON 0818 containing POEA contributes the majority of the toxicity to the herbicide formulations for fish, aquatic invertebrates, and amphibians. These study results suggest that anurans are among the most sensitive species, and emphasize the importance of testing the herbicide formulation in addition to its separate components to accurately characterize the toxicity and potential risk of the formulation.
Asunto(s)
Anuros/fisiología , Glicina/análogos & derivados , Herbicidas/toxicidad , Animales , Contaminantes Ambientales/toxicidad , Grasas/toxicidad , Glicina/toxicidad , Larva/efectos de los fármacos , Larva/fisiología , Dosificación Letal Mediana , Polietilenglicoles/toxicidad , Medición de Riesgo , Tensoactivos/toxicidad , GlifosatoRESUMEN
The cytotoxicity and physical properties of various submicron O/W emulsions and solid lipid nanoparticles for dermal applications were investigated. Droplet size and zetapotential of submicron emulsions depended on the composition of the cosurfactant blend used. The viability of J774 macrophages, mouse 3T3 fibroblasts and HaCaT keratinocytes was significantly reduced in the presence of stearylamine. Nanoparticles consisting of stearic acid or different kinds of adeps solidus could be manufactured when formulated with lecithin, sodium taurocholate, polysorbate 80 and stearylamine. Survival of macrophages was highly affected by stearic acid and stearylamine. In general a viability of more than 90% was observed when semi-synthetic glycerides or hard fat was employed to formulate nanoparticles.
Asunto(s)
Portadores de Fármacos , Emulsiones , Lípidos/toxicidad , Nanopartículas , Tensoactivos/toxicidad , Administración Cutánea , Aminas/toxicidad , Animales , Células 3T3 BALB , Supervivencia Celular/efectos de los fármacos , Grasas/toxicidad , Fibroblastos/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Lípidos/administración & dosificación , Lípidos/química , Macrófagos/efectos de los fármacos , Ratones , Tamaño de la Partícula , Fosfatidilcolinas/toxicidad , Fosfatidilserinas/toxicidad , Polisorbatos/toxicidad , Aceite de Soja/toxicidad , Ácidos Esteáricos/toxicidad , Tensoactivos/administración & dosificación , Tensoactivos/química , Ácido Taurocólico/toxicidad , Agua/químicaRESUMEN
A series of toxicity tests with MON 0818, a commercial surfactant mixture of polyoxyethylene tallow amines, were performed: 1) in the presence of sediment for benthic invertebrates and fish: 2) to examine the recovery capacity of Daphnia magna and 4 primary producers after a pulsed (24-h) exposure; and 3) to examine the potential effect of increased water temperature on toxicity of MON 0818 to 2 cold-water fishes. In the presence of sediment, no acute (24-h) mortality was observed for 3 of the 5 species up to 10 mg L-1 . The median effective concentrations for the other 2 species were significantly greater than for water only tests. The EC50 at 15 °C for Salvelinus alpinus was statistically lower than that at 10 °C. Latent effects of a 24-h exposure (1 mg L-1 ) were observed for Rhabdocelis subcapitata and Chlorella vulgaris, as indicated by delayed growth during recovery phase; however, both cultures were able to recover, as indicated by a lack of changes in maximum absolute growth rates. No significant effects of a 24-h exposure to MON 0818 were observed for Oophila sp. (1.5 mg L-1 ) or Lemna minor (100 mg L-1 ). Latent mortality after a 24-h exposure to 5 mg L-1 was observed during the recovery phase for D. magna; however, reproduction endpoints on surviving individuals were not altered. The results indicate that quick dissipation of MON 0818 in the presence of sediment can reduce the effects on exposed organisms, and that full recovery from 24-h exposures to concentrations of MON 0818 equal to, or greater than, those expected in the environment is possible. Environ Toxicol Chem 2017;36:512-521. © 2016 SETAC.
Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Grasas/toxicidad , Sedimentos Geológicos/química , Glicina/análogos & derivados , Herbicidas/química , Polietilenglicoles/toxicidad , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Grasas/química , Glicina/química , Dosificación Letal Mediana , Polietilenglicoles/química , Tensoactivos/química , Temperatura , Pruebas de Toxicidad , Contaminantes Químicos del Agua/química , GlifosatoRESUMEN
The sensitivity of 15 aquatic species, including primary producers, benthic invertebrates, cladocerans, mollusks, and fish, to MON 0818, a commercial surfactant mixture of polyoxyethylene tallow amines, was evaluated in standard acute (48-96-h) laboratory tests. In addition, the potential for chronic toxicity (8 d) was evaluated with Ceriodaphnia dubia. Exposure concentrations were confirmed. No significant effects on any endpoint were observed in the chronic test. A tier-1 hazard assessment was conducted by comparing species sensitivity distributions based on the generated data, as well as literature data, with 4 exposure scenarios. This assessment showed moderate levels of hazard (43.1% of the species exposed at or above median effective concentration levels), for a chosen worst-case scenario-unintentional direct over-spray of a 15-cm-deep body of water with the maximum label application rate for the studied formulations (Roundup Original, Vision Forestry Herbicide; 12 L formulation ha-1 , equivalent to 4.27 kg acid equivalent [a.e.] ha-1 ). The hazard decreased to impairment of 20.9% of species under the maximum application rate for more typical uses (6 L formulation ha-1 , 2.14 kg a.e. ha-1 ), and down to 6.9% for a more frequently employed application rate (2.5 L formulation ha-1 , 0.89 kg a.e. ha-1 ). Finally, the percentage (3.8%) was less than the hazardous concentration for 5% of the species based on concentrations of MON 0818 calculated from maximum measured concentrations of glyphosate in the environment. Environ Toxicol Chem 2017;36:501-511. © 2016 SETAC.
Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Grasas/toxicidad , Glicina/análogos & derivados , Herbicidas/química , Polietilenglicoles/toxicidad , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Grasas/química , Glicina/química , Polietilenglicoles/química , Medición de Riesgo , Especificidad de la Especie , Tensoactivos/química , Contaminantes Químicos del Agua/química , GlifosatoRESUMEN
The surfactant mixture MON 0818 is an adjuvant in various commercial formulations of the herbicide glyphosate. Initial studies have shown that MON 0818 is more toxic to aquatic animals than the active ingredient. However, few studies have examined the effect of exposure to MON 0818 on species of mollusks, and no studies have examined the effect on gastropods. The present study investigated the effect of acute exposure (96 h) of MON 0818 to the eggs, juveniles, and adults of the file ramshorn snail (Planorbella pilsbryi). Concentrations of MON 0818 up to 9.9 mg/L did not have a significant effect on the viability of eggs (p > 0.05). Juvenile snails (50% lethal concentration [LC50] = 4.0 mg/L) were more sensitive than adult snails (LC50 = 4.9-9.1 mg/L). Oviposition was inhibited by exposure to MON 0818 (median effective concentration [EC50] = 0.4-2.0 mg/L). However, oviposition resumed when snails were removed to clean water, even after 96-h exposure to up to 4.9 mg/L of MON 0818. Exposure to a concentration ≥2.7 mg/L caused visible damage to the tentacles of adult snails, which could potentially impact chemoreception. A deterministic hazard assessment indicated that environmentally relevant concentrations of MON 0818 could pose a hazard to the deposition of eggs. However, because of the relatively short half-life of MON 0818 in aquatic systems and the ability of snails to resume oviposition following the dissipation of MON 0818, environmentally relevant concentrations of MON 0818 likely pose a de minimis risk to populations of ramshorn snails. Environ Toxicol Chem 2017;36:522-531. © 2016 SETAC.
Asunto(s)
Grasas/toxicidad , Herbicidas/química , Oviposición/efectos de los fármacos , Óvulo/efectos de los fármacos , Polietilenglicoles/toxicidad , Caracoles/efectos de los fármacos , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Grasas/química , Glicina/análogos & derivados , Glicina/química , Semivida , Dosificación Letal Mediana , Polietilenglicoles/química , Caracoles/crecimiento & desarrollo , Tensoactivos/química , Contaminantes Químicos del Agua/química , GlifosatoRESUMEN
The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water-sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l(-1) nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43-83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23-97%) was only observed in overlying water sampled from water-sediment microcosms during the first 24h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4-6 mg l(-1)) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.
Asunto(s)
Daphnia/efectos de los fármacos , Grasas/toxicidad , Agua Dulce/análisis , Sedimentos Geológicos/química , Polietilenglicoles/toxicidad , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Daphnia/crecimiento & desarrollo , Pruebas de ToxicidadRESUMEN
Glyphosate, a common herbicide, is not toxic under normal exposure circumstances. However, this chemical, when combined with a surfactant, is cytotoxic. In this study, the mechanism of the additive effect of glyphosate and TN-20, a common surfactant in glyphosate herbicides, was investigated. After exposure of rat H9c2 cells to glyphosate and TN-20 mixtures, following assays were performed: flow cytometry to determine the proportion of cells that underwent apoptosis and necrosis; western blotting to determine expression of mitochondrial proteins (Bcl-2 and Bax); immunological methods to evaluate translocation of cytochrome C; luminometric measurements to determine activity of caspases 3/7 and 9; and tetramethyl rhodamine methyl ester assay to measure mitochondrial membrane potentials. Bcl-1 intensity decreased while Bax intensity increased with exposure to increasing TN-20 and/or glyphosate concentrations. Caspase activity increased and mitochondrial membrane potential decreased only when the cells were exposed to a mixture of both TN-20 and glyphosate, but not after exposure to either one of these compounds. The results support the possibility that mixtures of glyphosate and TN-20 aggravate mitochondrial damage and induce apoptosis and necrosis. Throughout this process, TN-20 seems to disrupt the integrity of the cellular barrier to glyphosate uptake, promoting glyphosate-mediated toxicity.