Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 32(11): 3576-3597, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32883711

RESUMEN

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Celulosa/biosíntesis , Metiltransferasas/metabolismo , Mutación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Adhesión Celular/genética , Pared Celular/genética , Celulosa/genética , Dinitrobencenos/farmacología , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Metiltransferasas/genética , Microtúbulos/metabolismo , Pectinas/biosíntesis , Pectinas/genética , Pectinas/metabolismo , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Sulfanilamidas/farmacología , Ácidos Urónicos/metabolismo
2.
Plant Cell Physiol ; 62(4): 678-692, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33570567

RESUMEN

The force of gravity is a constant environmental factor. Plant shoots respond to gravity through negative gravitropism and gravity resistance. These responses are essential for plants to direct the growth of aerial organs away from the soil surface after germination and to keep an upright posture above ground. We took advantage of the effect of brassinosteroids (BRs) on the two types of graviresponses in Arabidopsis thaliana hypocotyls to disentangle functions of cell wall polymers during etiolated shoot growth. The ability of etiolated Arabidopsis seedlings to grow upward was suppressed in the presence of 24-epibrassinolide (EBL) but enhanced in the presence of brassinazole (BRZ), an inhibitor of BR biosynthesis. These effects were accompanied by changes in cell wall mechanics and composition. Cell wall biochemical analyses, confocal microscopy of the cellulose-specific pontamine S4B dye and cellular growth analyses revealed that the EBL and BRZ treatments correlated with changes in cellulose fibre organization, cell expansion at the hypocotyl base and mannan content. Indeed, a longitudinal reorientation of cellulose fibres and growth inhibition at the base of hypocotyls supported their upright posture whereas the presence of mannans reduced gravitropic bending. The negative effect of mannans on gravitropism is a new function for this class of hemicelluloses. We also found that EBL interferes with upright growth of hypocotyls through their uneven thickening at the base.


Asunto(s)
Arabidopsis/fisiología , Brasinoesteroides/metabolismo , Celulosa/metabolismo , Hipocótilo/fisiología , Mananos/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Brasinoesteroides/farmacología , Pared Celular/química , Pared Celular/efectos de los fármacos , Celulosa/química , Gravitropismo/fisiología , Hipocótilo/química , Mananos/química , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Polisacáridos/química , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacología , Imagen de Lapso de Tiempo
3.
J Exp Bot ; 71(19): 5852-5864, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640016

RESUMEN

Hydrogen sulfide (H2S) is known to have positive physiological functions in plant growth, but limited data are available on its influence on cell walls. Here, we demonstrate a novel mechanism by which H2S regulates the biosynthesis and deposition of cell wall cellulose in alfalfa (Medicago sativa). Treatment with NaHS was found to increase the length of epidermal cells in the hypocotyl, and transcriptome analysis indicated that it caused the differential expression of numerous of cell wall-related genes. These differentially expressed genes were directly associated with the biosynthesis of cellulose and hemicellulose, and with the degradation of pectin. Analysis of cell wall composition showed that NaHS treatment increased the contents of cellulose and hemicellulose, but decreased the pectin content. Atomic force microscopy revealed that treatment with NaHS decreased the diameter of cellulose fibrils, altered the arrangement of the fibrillar bundles, and increased the spacing between the bundles. The dynamics of cellulose synthase complexes (CSCs) were closely related to cellulose synthesis, and NaHS increased the rate of mobility of the particles. Overall, our results suggest that the H2S signal enhances the plasticity of the cell wall by regulating the deposition of cellulose fibrils and by decreasing the pectin content. The resulting increases in cellulose and hemicellulose contents lead to cell wall expansion and cell elongation.


Asunto(s)
Sulfuro de Hidrógeno , Medicago sativa , Pared Celular , Celulosa , Hipocótilo , Medicago sativa/genética
4.
Plant Cell ; 29(6): 1305-1315, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28550150

RESUMEN

Plant growth is sustained by two complementary processes: biomass biosynthesis and cell expansion. The cell wall is crucial to both as it forms the majority of biomass, while its extensibility limits cell expansion. Cellulose is a major component of the cell wall and cellulose synthesis is pivotal to plant cell growth, and its regulation is poorly understood. Using periodic diurnal variation in Arabidopsis thaliana hypocotyl growth, we found that cellulose synthesis and cell expansion can be uncoupled and are regulated by different mechanisms. We grew Arabidopsis plants in very short photoperiods and used a combination of extended nights, continuous light, sucrose feeding experiments, and photosynthesis inhibition to tease apart the influences of light, metabolic, and circadian clock signaling on rates of cellulose biosynthesis and cell wall biomechanics. We demonstrate that cell expansion is regulated by protein-mediated changes in cell wall extensibility driven by the circadian clock. By contrast, the biosynthesis of cellulose is controlled through intracellular trafficking of cellulose synthase enzyme complexes regulated exclusively by metabolic signaling related to the carbon status of the plant and independently of the circadian clock or light signaling.


Asunto(s)
Arabidopsis/metabolismo , Celulosa/biosíntesis , Celulosa/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Regulación de la Expresión Génica de las Plantas , Transducción de Señal/genética , Transducción de Señal/fisiología
5.
Plant Cell Rep ; 39(7): 953-969, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32314045

RESUMEN

KEY MESSAGE: Seed-specific down-regulation of AtCESA1 and AtCESA9, which encode cellulose synthase subunits, differentially affects seed storage compound accumulation in Arabidopsis. High amounts of cellulose can negatively affect crop seed quality, and, therefore, diverting carbon partitioning from cellulose to oil, protein and/or starch via molecular breeding may improve seed quality. To determine the effect of seed cellulose content reduction on levels of storage compounds, Arabidopsis thaliana CELLULOSE SYNTHASE1 (AtCESA1) and AtCESA9 genes, which both encode cellulose synthase subunits, were individually down-regulated using seed-specific intron-spliced hairpin RNA (hpRNAi) constructs. The selected seed-specific AtCESA1 and AtCESA9 Arabidopsis RNAi lines displayed reduced cellulose contents in seeds, and exhibited no obvious visual phenotypic growth defects with the exception of a minor effect on early root development in AtCESA1 RNAi seedlings and early hypocotyl elongation in the dark in both types of RNAi line. The seed-specific down-regulation of AtCESA9 resulted in a reduction in seed weight compared to empty vector controls, which was not observed in AtCESA1 RNAi lines. In terms of effects on carbon partitioning, AtCESA1 and AtCESA9 RNAi lines exhibited distinct effects. The down-regulation of AtCESA1 led to a ~ 3% relative increase in seed protein content (P = 0.04) and a ~ 3% relative decrease in oil content (P = 0.02), but caused no alteration in soluble glucose levels. On the contrary, AtCESA9 RNAi lines did not display a significant reduction in seed oil, protein or soluble glucose content. Taken together, our results indicate that the seed-specific down-regulation of AtCESA1 causes alterations in seed storage compound accumulation, while the effect of AtCESA9 on carbon partitioning is absent or minor in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Carbono/metabolismo , Celulosa/metabolismo , Regulación hacia Abajo , Glucosiltransferasas/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Glucosiltransferasas/genética , Homocigoto , Hipocótilo/anatomía & histología , Especificidad de Órganos , Fenotipo , Aceites de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN , Semillas/enzimología , Solubilidad , Almidón/metabolismo
6.
Planta ; 250(5): 1539-1556, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31352512

RESUMEN

MAIN CONCLUSION: The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp. In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.


Asunto(s)
Cannabis/genética , Proteínas de Plantas/metabolismo , Polisacáridos/metabolismo , Cannabis/crecimiento & desarrollo , Cannabis/metabolismo , Cannabis/ultraestructura , Pared Celular/metabolismo , Pared Celular/ultraestructura , Celulosa/metabolismo , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/ultraestructura , Transporte de Proteínas
7.
Plant J ; 89(6): 1159-1173, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28004869

RESUMEN

Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2AT . PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2-GFP localizes to the cell wall, and PGX2AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild-type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1AT plants, PGX2AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hipocótilo/genética , Lignina/metabolismo , Pectinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Poligalacturonasa/metabolismo
8.
BMC Plant Biol ; 18(1): 1, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29291729

RESUMEN

BACKGROUND: Lignin and lignans are both derived from the monolignol pathway. Despite the similarity of their building blocks, they fulfil different functions in planta. Lignin strengthens the tissues of the plant, while lignans are involved in plant defence and growth regulation. Their biosyntheses are tuned both spatially and temporally to suit the development of the plant (water conduction, reaction to stresses). We propose to study the general molecular events related to monolignol-derived product biosynthesis, especially lignin. It was previously shown that the growing hemp hypocotyl (between 6 and 20 days after sowing) is a valid system to study secondary growth and the molecular events accompanying lignification. The present work confirms the validity of this system, by using it to study the regulation of lignin and lignan biosynthesis. Microscopic observations, lignin analysis, proteomics, together with in situ laccase and peroxidase activity assays were carried out to understand the dynamics of lignin synthesis during the development of the hemp hypocotyl. RESULTS: Based on phylogenetic analysis and targeted gene expression, we suggest a role for the hemp dirigent and dirigent-like proteins in lignan biosynthesis. The transdisciplinary approach adopted resulted in the gene- and protein-level quantification of the main enzymes involved in the biosynthesis of monolignols and their oxidative coupling (laccases and class III peroxidases), in lignin deposition (dirigent-like proteins) and in the determination of the stereoconformation of lignans (dirigent proteins). CONCLUSIONS: Our work sheds light on how, in the growing hemp hypocotyl, the provision of the precursors needed to synthesize the aromatic biomolecules lignin and lignans is regulated at the transcriptional and proteomic level.


Asunto(s)
Cannabis/metabolismo , Expresión Génica , Hipocótilo/metabolismo , Lignanos/biosíntesis , Lignina/biosíntesis , Cannabis/genética , Lacasa/genética , Lacasa/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Proteómica
9.
Planta ; 248(4): 1029-1036, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29968063

RESUMEN

MAIN CONCLUSION: The application of jasmonic acid results in an increased secondary growth, as well as additional secondary phloem fibres and higher lignin content in the hypocotyl of textile hemp (Cannabis sativa L.). Secondary growth provides most of the wood in lignocellulosic biomass. Textile hemp (Cannabis sativa L.) is cultivated for its phloem fibres, whose secondary cell wall is rich in crystalline cellulose with a limited amount of lignin. Mature hemp stems and older hypocotyls are characterised by large blocks of secondary phloem fibres which originate from the cambium. This study aims at investigating the role of exogenously applied jasmonic acid on the differentiation of secondary phloem fibres. We show indeed that the exogenous application of this plant growth regulator on young hemp plantlets promotes secondary growth, differentiation of secondary phloem fibres, expression of lignin-related genes, and lignification of the hypocotyl. This work paves the way to future investigations focusing on the molecular network underlying phloem fibre development.


Asunto(s)
Cannabis/crecimiento & desarrollo , Celulosa/metabolismo , Ciclopentanos/farmacología , Lignina/metabolismo , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Biomasa , Cámbium/efectos de los fármacos , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Cannabis/efectos de los fármacos , Cannabis/genética , Cannabis/metabolismo , Pared Celular/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Lignina/análisis , Floema/efectos de los fármacos , Floema/genética , Floema/crecimiento & desarrollo , Floema/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Textiles , Madera/metabolismo
10.
Plant Physiol ; 171(1): 242-50, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26969722

RESUMEN

Here we report that phosphorylation status of S211 and T212 of the CESA3 component of Arabidopsis (Arabidopsis thaliana) cellulose synthase impacts the regulation of anisotropic cell expansion as well as cellulose synthesis and deposition and microtubule-dependent bidirectional mobility of CESA complexes. Mutation of S211 to Ala caused a significant decrease in the length of etiolated hypocotyls and primary roots, while root hairs were not significantly affected. By contrast, the S211E mutation stunted the growth of root hairs, but primary roots were not significantly affected. Similarly, T212E caused a decrease in the length of root hairs but not root length. However, T212E stunted the growth of etiolated hypocotyls. Live-cell imaging of fluorescently labeled CESA showed that the rate of movement of CESA particles was directionally asymmetric in etiolated hypocotyls of S211A and T212E mutants, while similar bidirectional velocities were observed with the wild-type control and S211E and T212A mutant lines. Analysis of cell wall composition and the innermost layer of cell wall suggests a role for phosphorylation of CESA3 S211 and T212 in cellulose aggregation into fibrillar bundles. These results suggest that microtubule-guided bidirectional mobility of CESA complexes is fine-tuned by phosphorylation of CESA3 S211 and T212, which may, in turn, modulate cellulose synthesis and organization, resulting in or contributing to the observed defects of anisotropic cell expansion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Glucosiltransferasas/metabolismo , Fosforilación , Anisotropía , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Celulosa/metabolismo , ADN Complementario , Dinitrobencenos , Etiolado , Glucosiltransferasas/genética , Hipocótilo/metabolismo , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microtúbulos/metabolismo , Monosacáridos/análisis , Mutagénesis Sitio-Dirigida , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/crecimiento & desarrollo , Sulfanilamidas
11.
Plant Physiol ; 170(1): 234-49, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26527657

RESUMEN

Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.


Asunto(s)
Arabidopsis/metabolismo , Celulosa/biosíntesis , Glucanos/metabolismo , Microtúbulos/metabolismo , Xilanos/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Celulosa/ultraestructura , Dinitrobencenos/farmacología , Regulación de la Expresión Génica de las Plantas , Glucanos/genética , Hipocótilo/genética , Hipocótilo/metabolismo , Microfibrillas/genética , Microfibrillas/metabolismo , Microfibrillas/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Mutación , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Presión , Plantones/genética , Plantones/metabolismo , Sulfanilamidas/farmacología , Xilanos/genética
12.
Plant Physiol ; 171(1): 110-24, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27013021

RESUMEN

In order to understand factors controlling the synthesis and deposition of cellulose, we have studied the Arabidopsis (Arabidopsis thaliana) double mutant shaven3 shaven3-like1 (shv3svl1), which was shown previously to exhibit a marked cellulose deficiency. We discovered that exogenous sucrose (Suc) in growth medium greatly enhances the reduction in hypocotyl elongation and cellulose content of shv3svl1 This effect was specific to Suc and was not observed with other sugars or osmoticum. Live-cell imaging of fluorescently labeled cellulose synthase complexes revealed a slowing of cellulose synthase complexes in shv3svl1 compared with the wild type that is enhanced in a Suc-conditional manner. Solid-state nuclear magnetic resonance confirmed a cellulose deficiency of shv3svl1 but indicated that cellulose crystallinity was unaffected in the mutant. A genetic suppressor screen identified mutants of the plasma membrane Suc/H(+) symporter SUC1, indicating that the accumulation of Suc underlies the Suc-dependent enhancement of shv3svl1 phenotypes. While other cellulose-deficient mutants were not specifically sensitive to exogenous Suc, the feronia (fer) receptor kinase mutant partially phenocopied shv3svl1 and exhibited a similar Suc-conditional cellulose defect. We demonstrate that shv3svl1, like fer, exhibits a hyperpolarized plasma membrane H(+) gradient that likely underlies the enhanced accumulation of Suc via Suc/H(+) symporters. Enhanced intracellular Suc abundance appears to favor the partitioning of carbon to starch rather than cellulose in both mutants. We conclude that SHV3-like proteins may be involved in signaling during cell expansion that coordinates proton pumping and cellulose synthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulosa/metabolismo , Sacarosa/metabolismo , Simportadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Radioisótopos de Carbono/metabolismo , Pared Celular/metabolismo , Celulosa/química , Mapeo Cromosómico , Oscuridad , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Concentración de Iones de Hidrógeno , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Hipocótilo/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fenotipo , Fosfotransferasas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Almidón/química , Almidón/metabolismo , Simportadores/genética
13.
Plant Physiol ; 167(2): 381-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25535279

RESUMEN

Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Celulasa/metabolismo , Celulosa/metabolismo , Inhibidores Enzimáticos/farmacología , Glucosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Anisotropía , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Benzamidas/farmacología , Compartimento Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Dinitrobencenos/farmacología , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Sulfanilamidas/farmacología
14.
Plant Physiol ; 166(3): 1177-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25077797

RESUMEN

Cellulose biosynthesis is a common feature of land plants. Therefore, cellulose biosynthesis inhibitors (CBIs) have a potentially broad-acting herbicidal mode of action and are also useful tools in decoding fundamental aspects of cellulose biosynthesis. Here, we characterize the herbicide indaziflam as a CBI and provide insight into its inhibitory mechanism. Indaziflam-treated seedlings exhibited the CBI-like symptomologies of radial swelling and ectopic lignification. Furthermore, indaziflam inhibited the production of cellulose within <1 h of treatment and in a dose-dependent manner. Unlike the CBI isoxaben, indaziflam had strong CBI activity in both a monocotylonous plant (Poa annua) and a dicotyledonous plant (Arabidopsis [Arabidopsis thaliana]). Arabidopsis mutants resistant to known CBIs isoxaben or quinoxyphen were not cross resistant to indaziflam, suggesting a different molecular target for indaziflam. To explore this further, we monitored the distribution and mobility of fluorescently labeled CELLULOSE SYNTHASE A (CESA) proteins in living cells of Arabidopsis during indaziflam exposure. Indaziflam caused a reduction in the velocity of YELLOW FLUORESCENT PROTEIN:CESA6 particles at the plasma membrane focal plane compared with controls. Microtubule morphology and motility were not altered after indaziflam treatment. In the hypocotyl expansion zone, indaziflam caused an atypical increase in the density of plasma membrane-localized CESA particles. Interestingly, this was accompanied by a cellulose synthase interacting1-independent reduction in the normal coincidence rate between microtubules and CESA particles. As a CBI, for which there is little evidence of evolved weed resistance, indaziflam represents an important addition to the action mechanisms available for weed management.


Asunto(s)
Arabidopsis/efectos de los fármacos , Celulosa/biosíntesis , Glucosiltransferasas/antagonistas & inhibidores , Herbicidas/farmacología , Indenos/farmacología , Poa/efectos de los fármacos , Triazinas/farmacología , Arabidopsis/citología , Arabidopsis/enzimología , Benzamidas/farmacología , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Glucosiltransferasas/metabolismo , Herbicidas/química , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/enzimología , Indenos/química , Microtúbulos/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/metabolismo , Poa/citología , Poa/enzimología , Plantones/citología , Plantones/efectos de los fármacos , Plantones/enzimología , Triazinas/química
15.
Plant Physiol ; 164(2): 584-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24381065

RESUMEN

The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Dexametasona/farmacología , Mutación/genética , Epidermis de la Planta/metabolismo , Metabolismo Secundario/efectos de los fármacos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Lignina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Epidermis de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Propanoles/metabolismo , Ácido Salicílico/metabolismo , Metabolismo Secundario/genética , Solubilidad , Factores de Tiempo
16.
Plant Cell Environ ; 38(3): 411-22, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24995569

RESUMEN

Seedling de-etiolation (photomorphogenesis) is an important light-regulated developmental process in plants. Here, we showed that disruption of the gene encoding a glycosyltransferase-like protein, ABA INSENSITIVE 8 (ABI8)/ELONGATION EFFECTIVE 1 (ELD1)/KOBITO1 (KOB1), caused short-hypocotyl elongation under all light conditions examined and even in darkness. We found that the ABI8 transcript level was down-regulated by light in a phytochrome A-dependent manner. Furthermore, light destabilized ABI8 protein via the 26S proteasome degradation pathway. We showed that ABI8 promoted the expression of genes involved in cell elongation and cellulose synthesis. Consistently, the cellulose content was reduced in the abi8 mutants and application of 2, 6-dichlorobenzonitrile (an inhibitor of cellulose biosynthesis) mimicked the abi8 mutant phenotype. Moreover, we found that phytochrome and cryptochrome photoreceptors negatively, whereas CONSTITUTIVE PHOTOMORPHOGENIC 1 positively, regulated cellulose synthesis. We also showed that ELONGATED HYPOCOTYL 5 directly bound to the promoters of ABI8 and several cellulose synthesis genes and repressed their expression in light conditions. Taken together, our study reveals that ABI8 functions as a negative factor in light inhibition of hypocotyl elongation through modulating cellulose biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Celulosa/biosíntesis , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Criptocromos/metabolismo , Oscuridad , Etiolado , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hipocótilo/enzimología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Luz , Proteínas de la Membrana/metabolismo , Fenotipo , Fitocromo A/metabolismo , Complejo de la Endopetidasa Proteasomal , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo
17.
Plant Physiol ; 162(2): 675-88, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23606596

RESUMEN

The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.


Asunto(s)
Actinas/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glucosiltransferasas/metabolismo , Interfase , Citoesqueleto de Actina/metabolismo , Actinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Pared Celular/metabolismo , Celulosa/metabolismo , Citoesqueleto/metabolismo , Exocitosis , Glucosiltransferasas/genética , Aparato de Golgi , Hipocótilo/citología , Hipocótilo/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutación
18.
Plant Cell ; 23(7): 2592-605, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742992

RESUMEN

It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.


Asunto(s)
Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Celulosa/ultraestructura , Hipocótilo/citología , Hipocótilo/crecimiento & desarrollo , Epidermis de la Planta/citología , Epidermis de la Planta/crecimiento & desarrollo , Anisotropía , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/química , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Hipocótilo/metabolismo , Microfibrillas/química , Microfibrillas/metabolismo , Microfibrillas/ultraestructura , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Epidermis de la Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
19.
Plant Cell Rep ; 33(5): 697-706, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24633990

RESUMEN

Developmental biology studies in general benefit from model organisms that are well characterized. Arabidopsis thaliana fulfills this criterion and represents one of the best experimental systems to study developmental processes in higher plants. Light is a crucial factor that drives photosynthesis, but that also regulates plant morphogenesis. As the hypocotyl is completely embryonic of origin, its growth occurs solely by expansion of the cells and this process is strongly dependent on the light conditions. In this review, we provide evidence that the hypocotyl serves as ideal model object to study cell expansion mechanisms and its regulation. We focus on the regulation of hypocotyl development by light and highlight the key modulating proteins in this signaling cascade. Downstream of light-signaling, cellular expansion is greatly dependent on specific cell wall depositions, which is related to cortical microtubular (re)arrangements and on composition and/or extensibility of the cell wall. We discuss possible further experimental approaches to broaden our knowledge on hypocotyl development, which will give an outlook on the probable evolution of the field.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Luz , Microtúbulos/metabolismo , Modelos Biológicos , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/fisiología , Epidermis de la Planta/efectos de la radiación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Transducción de Señal
20.
Planta ; 237(6): 1585-97, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23508664

RESUMEN

Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5-GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.


Asunto(s)
Celulosa/biosíntesis , Fibra de Algodón , Glucosiltransferasas/metabolismo , Gossypium/enzimología , Proteínas de Plantas/metabolismo , Western Blotting , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/química , Glucosiltransferasas/genética , Gossypium/genética , Hipocótilo/enzimología , Hipocótilo/crecimiento & desarrollo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Familia de Multigenes , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA