Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 821-851, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32228045

RESUMEN

Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.


Asunto(s)
Hemiterpenos/biosíntesis , Hevea/metabolismo , Látex/biosíntesis , Proteínas de Plantas/química , Goma/química , Transferasas/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hemiterpenos/química , Hemiterpenos/metabolismo , Hevea/química , Hevea/genética , Látex/química , Látex/metabolismo , Modelos Moleculares , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Goma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/química , Terpenos/metabolismo , Transferasas/genética , Transferasas/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 191, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305904

RESUMEN

Bacterial degradation of natural rubber (NR) in an oxic environment is initiated by oxidative cleavage of double bonds in the NR-carbon backbone and is catalyzed by extracellular haem-containing rubber oxygenases. NR-cleavage products of sufficiently low molecular mass are taken up by the cells and metabolized for energy and biomass formation. Gram-negative and Gram-positive NR-degrading bacteria (usually) employ different types of rubber oxygenases such as RoxA and/or RoxB (most Gram-negative NR-degraders) or latex clearing protein Lcp (most Gram-positive NR-degraders). In order to find novel orthologues of Rox proteins, we have revisited databases and provide an update of Rox-like proteins. We describe the putative evolution of rubber oxygenases and confirm the presence of a third subgroup of Rox-related proteins (RoxCs), the biological function of which remains, however, unclear. We summarize the knowledge on the taxonomic position of Steroidobacter cummioxidans 35Y and related species. Comparison of genomic and biochemical features of strain 35Y with other species of the genus Steroidobacter suggests that strain 35Y represents a species of a novel genus for which the designation Aurantibaculum gen. nov. is proposed. A short summary on the capabilities of NR-degrading consortia, that could be superior in biotechnological applications compared to pure cultures, is also provided. KEY POINTS: • Three types of rubber oxygenases exist predominantly in Gram-negative microbes • S. cummioxidans 35Y contains RoxA and RoxB which are superior in activity • S. cummioxidans 35Y represents a species of a novel genus.


Asunto(s)
Oxigenasas , Goma , Goma/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/metabolismo , Látex/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473994

RESUMEN

Major latex proteins, or MLPs, are crucial to plants' capacity to grow, develop, and endure biotic and abiotic stresses. The MLP gene family has been found in numerous plants, but little is known about its role in Populus simonii × P. nigra. This study discovered and assessed 43 PtMLP genes that were unevenly dispersed throughout 12 chromosomes in terms of their physicochemical characteristics, gene structure, conserved motifs, and protein localization. Based on their phylogeny and protein structural characteristics, three separate subclasses of PtMLP family were identified. Segmental and tandem duplication were found to be essential variables in the expansion of the PtMLP genes. The involvement of the PtMLP genes in growth and development, as well as in the responses to different hormones and stresses, was demonstrated by cis-regulatory element prediction. The PtMLP genes showed varying expression patterns in various tissues and under different conditions (cold, salt, and drought stress), as demonstrated in RNA-Seq databases, suggesting that PsnMLP may have different functions. Following the further investigation of the genes demonstrating notable variations in expression before and after the application of three stresses, PsnMLP5 was identified as a candidate gene. Subsequent studies revealed that PsnMLP5 could be induced by ABA treatment. This study paves the way for further investigations into the MLP genes' functional mechanisms in response to abiotic stressors, as well as the ways in which they can be utilized in poplar breeding for improved stress tolerance.


Asunto(s)
Proteínas de Plantas , Populus , Proteínas de Plantas/genética , Populus/genética , Látex/metabolismo , Fitomejoramiento , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Familia de Multigenes
4.
Biochem Biophys Res Commun ; 679: 205-214, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37708579

RESUMEN

According to the fatty acid and headgroup compositions of the phospholipids (PL) from Hevea brasiliensis latex, three synthetic PL were selected (i.e. POPA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to investigate the effect of PL headgroup on the interactions with two major proteins of Hevea latex, i.e. Rubber Elongation Factor (REF1) and Small Rubber Particle Protein (SRPP1). Protein/lipid interactions were screened using two models (lipid vesicles in solution or lipid monolayers at air/liquid interface). Calcein leakage, surface pressure, ellipsometry, microscopy and spectroscopy revealed that both REF1 and SRPP1 displayed stronger interactions with anionic POPA and POPG, as compared to zwitterionic POPC. A particular behavior of REF1 was observed when interacting with POPA monolayers (i.e. aggregation + modification of secondary structure from α-helices to ß-sheets, characteristic of its amyloid aggregated form), which might be involved in the irreversible coagulation mechanism of Hevea rubber particles.


Asunto(s)
Hevea , Fosfolípidos , Fosfolípidos/metabolismo , Hevea/química , Hevea/metabolismo , Látex/química , Látex/metabolismo , Factores de Elongación de Péptidos/metabolismo , Estructura Secundaria de Proteína
5.
Planta ; 258(6): 116, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946063

RESUMEN

MAIN CONCLUSION: Each ß-1,3-glucanase with antifungal activity or yeast lytic activity hydrolyzes different structures of ß-1,3-glucans in the fungal cell wall, respectively. Plants express several glycoside hydrolases that target chitin and ß-glucan in fungal cell walls and inhibit pathogenic fungal infection. An antifungal ß-1,3-glucanase was purified from gazyumaru (Ficus microcarpa) latex, designated as GlxGluA, and the corresponding gene was cloned and expressed in Escherichia coli. The sequence shows that GlxGluA belongs to glycoside hydrolase family 17 (GH17). To investigate how GlxGluA acts to degrade fungal cell wall ß-glucan, it was compared with ß-1,3-glucanase with different substrate specificities. We obtained recombinant ß-1,3-glucanase (designated as CcGluA), which belongs to GH64, from the bacterium Cellulosimicrobium cellulans. GlxGluA inhibited the growth of the filamentous fungus Trichoderma viride but was unable to lyse the yeast Saccharomyces cerevisiae. In contrast, CcGluA lysed yeast cells but had a negligible inhibitory effect on the growth of filamentous fungi. GlxGluA degraded the cell wall of T. viride better than CcGluA, whereas CcGluA degraded the cell wall of S. cerevisiae more efficiently than GlxGluA. These results suggest that the target substrates in fungal cell walls differ between GlxGluA (GH17 class I ß-1,3-glucanase) and CcGluA (GH64 ß-1,3-glucanase).


Asunto(s)
Ficus , beta-Glucanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanos/metabolismo , Ficus/metabolismo , Látex/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/metabolismo , Hongos/metabolismo , Bacterias/metabolismo , Pared Celular/metabolismo
6.
Plant Biotechnol J ; 21(5): 1058-1072, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36710373

RESUMEN

The rubber tree (Hevea brasiliensis) is grown in tropical regions and is the major source of natural rubber. Using traditional breeding approaches, the latex yield has increased by sixfold in the last century. However, the underlying genetic basis of rubber yield improvement is largely unknown. Here, we present a high-quality, chromosome-level genome sequence of the wild rubber tree, the first report on selection signatures and a genome-wide association study (GWAS) of its yield traits. Population genomic analysis revealed a moderate population divergence between the Wickham clones and wild accessions. Interestingly, it is suggestive that H. brasiliensis and six relatives of the Hevea genus might belong to the same species. The selective sweep analysis found 361 obvious signatures in the domesticated clones associated with 245 genes. In a 15-year field trial, GWAS identified 155 marker-trait associations with latex yield, in which 326 candidate genes were found. Notably, six genes related to sugar transport and metabolism, and four genes related to ethylene biosynthesis and signalling are associated with latex yield. The homozygote frequencies of the causal nonsynonymous SNPs have been greatly increased under selection, which may have contributed to the fast latex yield improvement during the short domestication history. Our study provides insights into the genetic basis of the latex yield trait and has implications for genomic-assisted breeding by offering valuable resources in this new domesticated crop.


Asunto(s)
Hevea , Goma , Goma/metabolismo , Hevea/genética , Hevea/metabolismo , Látex/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica , Cromosomas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
7.
New Phytol ; 239(4): 1475-1489, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36597727

RESUMEN

Laticifers are hypothesized to mediate both plant-herbivore and plant-microbe interactions. However, there is little evidence for this dual function. We investigated whether the major constituent of natural rubber, cis-1,4-polyisoprene, a phylogenetically widespread and economically important latex polymer, alters plant resistance and the root microbiome of the Russian dandelion (Taraxacum koksaghyz) under attack of a root herbivore, the larva of the May cockchafer (Melolontha melolontha). Rubber-depleted transgenic plants lost more shoot and root biomass upon herbivory than normal rubber content near-isogenic lines. Melolontha melolontha preferred to feed on artificial diet supplemented with rubber-depleted rather than normal rubber content latex. Likewise, adding purified cis-1,4-polyisoprene in ecologically relevant concentrations to diet deterred larval feeding and reduced larval weight gain. Metagenomics and metabarcoding revealed that abolishing biosynthesis of natural rubber alters the structure but not the diversity of the rhizosphere and root microbiota (ecto- and endophytes) and that these changes depended on M. melolontha damage. However, the assumption that rubber reduces microbial colonization or pathogen load is contradicted by four lines of evidence. Taken together, our data demonstrate that natural rubber biosynthesis reduces herbivory and alters the plant microbiota, which highlights the role of plant-specialized metabolites and secretory structures in shaping multitrophic interactions.


Asunto(s)
Escarabajos , Taraxacum , Animales , Goma/química , Goma/metabolismo , Látex/metabolismo , Herbivoria , Larva , Plantas Modificadas Genéticamente/metabolismo , Taraxacum/genética
8.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834453

RESUMEN

Major latex proteins (MLPs) play a key role in plant response to abiotic and biotic stresses. However, little is known about this gene family in tomatoes (Solanum lycopersicum). In this paper, we perform a genome-wide evolutionary characterization and gene expression analysis of the MLP family in tomatoes. We found a total of 34 SlMLP members in the tomato genome, which are heterogeneously distributed on eight chromosomes. The phylogenetic analysis of the SlMLP family unveiled their evolutionary relationships and possible functions. Furthermore, the tissue-specific expression analysis revealed that the tomato MLP members possess distinct biological functions. Crucially, multiple cis-regulatory elements associated with stress, hormone, light, and growth responses were identified in the promoter regions of these SlMLP genes, suggesting that SlMLPs are potentially involved in plant growth, development, and various stress responses. Subcellular localization demonstrated that SlMLP1, SlMLP3, and SlMLP17 are localized in the cytoplasm. In conclusion, these findings lay a foundation for further dissecting the functions of tomato SlMLP genes and exploring the evolutionary relationships of MLP homologs in different plants.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Filogenia , Látex/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
9.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614226

RESUMEN

Major latex-like proteins (MLPs) play crucial roles in abiotic and biotic stresses. However, little was known about this gene family in cucumbers. In this study, a total of 37 putative cucumber MLP genes were identified on a genome-wide level and classified into three groups by sequence homologous comparison with Arabidopsis thaliana. Chromosome mapping suggested that only tandem duplication occurred in evolution. The multiple regulatory cis-elements related to stress, hormone, light and growth response were found in the promoter region of these CsMLP genes, indicating that CsMLPs might be widely involved in the process of plant growth, development and various stress conditions. Transcriptome analysis indicated a strong reprogramming of MLPs expression in response to Phytophthora melonis infection in cucumber. Knockdown of CsMLP1 reduced the P. melonis tolerance, while transient overexpression of CsMLP1 improved disease tolerance in cucumber. Conversely, the silence of CsMLP5 decreased the lesion area caused by P. melonis in the cotyledons, and overexpression of CsMLP5 promoted lesion expansion. Taken together, our results provide a comprehensive basis for further mining the function of CsMLP members and will also be significant for elucidating the evolutionary relationship in cucumber.


Asunto(s)
Arabidopsis , Cucumis sativus , Phytophthora , Cucumis sativus/genética , Cucumis sativus/metabolismo , Látex/metabolismo , Genoma de Planta , Phytophthora/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Filogenia , Regulación de la Expresión Génica de las Plantas
10.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003251

RESUMEN

Plant PP2C genes are crucial for various biological processes. To elucidate the potential functions of these genes in rubber tree (Hevea brasiliensis), we conducted a comprehensive analysis of these genes using bioinformatics methods. The 60 members of the PP2C family in rubber tree were identified and categorized into 13 subfamilies. The PP2C proteins were conserved across different plant species. The results revealed that the HbPP2C genes contained multiple elements responsive to phytohormones and stresses in their promoters, suggesting their involvement in these pathways. Expression analysis indicated that 40 HbPP2C genes exhibited the highest expression levels in branches and the lowest expression in latex. Additionally, the expression of A subfamily members significantly increased in response to abscisic acid, drought, and glyphosate treatments, whereas the expression of A, B, D, and F1 subfamily members notably increased under temperature stress conditions. Furthermore, the expression of A and F1 subfamily members was significantly upregulated upon powdery mildew infection, with the expression of the HbPP2C6 gene displaying a remarkable 33-fold increase. These findings suggest that different HbPP2C subgroups may have distinct roles in the regulation of phytohormones and the response to abiotic and biotic stresses in rubber tree. This study provides a valuable reference for further investigations into the functions of the HbPP2C gene family in rubber tree.


Asunto(s)
Hevea , Hevea/genética , Hevea/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Látex/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Filogenia
11.
Mol Biol Rep ; 49(8): 7773-7782, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35648252

RESUMEN

BACKGROUND: Zucchini plants (Cucurbita pepo) accumulate persistent organic pollutants (POPs) at high concentrations in their aerial parts, and major latex-like proteins (MLPs) play crucial roles in their accumulation. MLPs bind to POPs in root cells, MLP-POP complexes are then translocated into xylem vessels, and POPs are transported to the aerial parts. We previously identified three CpMLP genes (MLP-PG1, MLP-GR1, and MLP-GR3) as transporting factors for POPs; however, other studies have shown that the genomes of several plant species contain more than 10 MLP genes, thus, further MLP genes responsible for POP accumulation may have been overlooked. METHODS AND RESULTS: Here, we investigated the number of CpMLP genes by performing a hidden Markov model search against the C. pepo genome database and characterized their effects on POP accumulation by performing the expression analysis in the organs and in silico structural analysis. The C. pepo genome contained 21 CpMLP genes, and several CpMLP genes, including MLP-PG1 and MLP-GR3, were highly expressed in roots. 3D structural prediction showed that all examined CpMLPs contained a cavity with a hydrophobic region, which facilitated binding to POPs. CONCLUSIONS: The present study provides insights regarding CpMLP genes responsible for POP accumulation.


Asunto(s)
Cucurbita , Contaminantes del Suelo , Biodegradación Ambiental , Cucurbita/genética , Látex/análisis , Látex/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
12.
Oral Dis ; 28(3): 786-795, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33586328

RESUMEN

BACKGROUND: Previous studies have shown that latex proteins from Plumeria pudica (LPPp) have anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to evaluate the effects in rats of LPPp on ligature-induced periodontitis, an inflammatory disease. METHODS: The animals were divided into groups: saline (animals without induction of periodontitis), periodontitis (induced periodontitis and untreated) and LPPp (induced periodontitis and treated with 40 mg/kg). The following parameters were evaluated after 20 consecutive days of treatment: gingival bleeding index (GBI), probing pocket depth (PPD), alveolar bone height (ABH) and gingival myeloperoxidase (MPO) activity. In the hepatic tissue, malondialdehyde (MDA), glutathione (GSH) and histopathological alterations were evaluated. Blood levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured. RESULTS: Significant reduction in GBI, PPD and gingival MPO activity and ABH was seen in animals treated with LPPp compared with periodontitis. Values of GSH, MDA, ALT and histopathological evaluation were preserved in animals treated with LPPp. CONCLUSIONS: Treatment with LPPp improved clinical aspects of periodontitis, reduced the blood and hepatic alterations and prevented alveolar bone loss. Data suggest that LPPp have potential for treatment of periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Apocynaceae , Periodontitis , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/prevención & control , Animales , Apocynaceae/metabolismo , Látex/metabolismo , Látex/farmacología , Látex/uso terapéutico , Periodontitis/tratamiento farmacológico , Periodontitis/patología , Ratas , Ratas Wistar
13.
Biodegradation ; 33(6): 609-620, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36197531

RESUMEN

The biodegradation of rubber materials is considered as a sustainable recycling alternative, highlighting the use of microorganisms and enzymes in oxidative processes of natural rubber. Currently, the main challenge is the treatment of rubber materials such as waste tyres, where the mixture of rubber polymers with different additives and the cross-linked structure obtained due to the vulcanisation process positions them as highly persistent materials. This study characterises the degradation of different rubber-containing substrates in in vivo and in vitro processes using the bacterium Rhodococcus rhodochrous and the oxygenase latex clearing protein (Lcp) from the same strain. For the first time, the degradation of polyisoprene particles in liquid cultures of R. rhodochrous was analysed, obtaining up to 19.32% mass loss of the polymer when using it as the only carbon source. Scanning electron microscopy analysis demonstrated surface alteration of pure polyisoprene and vulcanised rubber particles after 2 weeks of incubation. The enzyme LcpRR was produced in bioreactors under rhamnose induction and its activity characterised in oxygen consumption assays at different enzyme concentrations. A maximum consumption of 28.38 µmolO2/min was obtained by adding 100 µg/mL LcpRR to a 2% (v/v) latex emulsion as substrate. The bioconversion of natural rubber into reaction degradation products or oligoisoprenoids was calculated to be 32.54%. Furthermore, the mass distribution of the oligoisoprenoids was analysed by liquid chromatography coupled to mass spectrometry (LC-MS) and 17 degradation products, ranging from C20 to C100 oligoisoprenoids, were identified. The multi-enzymatic degradation capacity of R. rhodochrous positions it as a model microorganism in complex degradation processes such as in the case of tyre waste.


Asunto(s)
Látex , Rhodococcus , Látex/metabolismo , Biodegradación Ambiental , Ramnosa/metabolismo , Emulsiones/metabolismo , Goma , Proteínas Bacterianas/metabolismo , Rhodococcus/metabolismo , Oxigenasas/química , Carbono/metabolismo
14.
Biochem Genet ; 60(6): 2171-2199, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35296963

RESUMEN

Scarcity of functional genetic markers associated with candidate genes (CGs) is a serious constraint for marker-assisted selection in the natural rubber producing tree, Hevea brasiliensis. In order to develop markers associated with rubber yield, five CGs involved in latex biosynthesis were characterized from 16 popular Hevea varieties. Novel SNPs and indels were identified and developed into markers using simple genotyping techniques like allele-specific PCR, CAPS, etc. A progeny population was genotyped using these markers to validate them, to understand their segregation pattern and to map them to a genetic linkage map. Parent-specific maps were constructed using pseudo-test cross strategy with the help of additional markers. The sequence structure information generated will be useful for future studies on gene mapping, functional relevance of coding SNPs and evolution of rubber biosynthesis genes in Hevea. Concurrently, the markers developed may serve as powerful tools for yield-based selection and for genetic diversity and pedigree studies in Hevea. Above all, the marker assays designed for genotyping could be economically carried out in any laboratory having basic molecular biology infrastructure and expertise.


Asunto(s)
Hevea , Hevea/genética , Hevea/metabolismo , Látex/metabolismo , Goma/metabolismo , Vías Biosintéticas , Marcadores Genéticos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293447

RESUMEN

The RPW8s (Resistance to Powdery Mildew 8) are atypical broad-spectrum resistance genes that provide resistance to the powdery mildew fungi. Powdery mildew of rubber tree is one of the serious fungal diseases that affect tree growth and latex production. However, the RPW8 homologs in rubber tree and their role of resistance to powdery mildew remain unclear. In this study, four RPW8 genes, HbRPW8-a, b, c, d, were identified in rubber tree, and phylogenetic analysis showed that HbRPW8-a was clustered with AtRPW8.1 and AtRPW8.2 of Arabidopsis. The HbRPW8-a protein was localized on the plasma membrane and its expression in rubber tree was significantly induced upon powdery mildew infection. Transient expression of HbRPW8-a in tobacco leaves induced plant immune responses, including the accumulation of reactive oxygen species and the deposition of callose in plant cells, which was similar to that induced by AtRPW8.2. Consistently, overexpression of HbRPW8-a in Arabidopsis thaliana enhanced plant resistance to Erysiphe cichoracearum UCSC1 and Pseudomonas syringae pv. tomato DC30000 (PstDC3000). Moreover, such HbRPW8-a mediated resistance to powdery mildew was in a salicylic acid (SA) dependent manner. Taken together, we demonstrated a new RPW8 member in rubber tree, HbRPW8-a, which could potentially contribute the resistance to powdery mildew.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Hevea , Arabidopsis/metabolismo , Hevea/genética , Hevea/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expresión Génica Ectópica , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Látex/metabolismo , Enfermedades de las Plantas/microbiología , Ascomicetos/fisiología , Erysiphe , Ácido Salicílico/metabolismo , Nicotiana/metabolismo , Resistencia a la Enfermedad/genética
16.
BMC Plant Biol ; 21(1): 244, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051757

RESUMEN

BACKGROUND: The processabilities and mechanical properties of natural rubber depend greatly on its molecular weight (MW) and molecular weight distribution (MWD). However, the mechanisms underlying the regulation of molecular weight during rubber biosynthesis remain unclear. RESULTS: In the present study, we determined the MW and particle size of latex from 1-year-old virgin trees and 30-year-old regularly tapped trees of the Hevea clones Reyan7-33-97 and RRIM600. The results showed that both the MW and the particle size of latex varied between these two clones and increased with tree age. Latex from RRIM600 trees had a smaller average particle size than that from Reyan7-33-97 trees of the same age. In 1-year-old trees, the Reyan7-33-97 latex displayed a slightly higher MW than that of RRIM600, whereas in 30-year-old trees, the RRIM600 latex had a significantly higher MW than the Reyan7-33-97 latex. Comparative analysis of the transcriptome profiles indicated that the average rubber particle size is negatively correlated with the expression levels of rubber particle associated proteins, and that the high-MW traits of latex are closely correlated with the enhanced expression of isopentenyl pyrophosphate (IPP) monomer-generating pathway genes and downstream allylic diphosphate (APP) initiator-consuming non-rubber pathways. By bioinformatics analysis, we further identified a group of transcription factors that potentially regulate the biosynthesis of IPP. CONCLUSIONS: Altogether, our results revealed the potential regulatory mechanisms involving gene expression variations in IPP-generating pathways and the non-rubber isoprenoid pathways, which affect the ratios and contents of IPP and APP initiators, resulting in significant rubber MW variations among same-aged trees of the Hevea clones Reyan7-33-97 and RRIM600. Our findings provide a better understanding of rubber biosynthesis and lay the foundation for genetic improvement of rubber quality in H. brasiliensis.


Asunto(s)
Hevea/genética , Látex/metabolismo , Transcriptoma , Hevea/metabolismo , Peso Molecular
17.
BMC Plant Biol ; 21(1): 420, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517831

RESUMEN

BACKGROUND: Natural rubber (cis-1,4-polyioprene, NR) is an indispensable industrial raw material obtained from the Pará rubber tree (H. brasiliensis). Natural rubber cannot be replaced by synthetic rubber compounds because of the superior resilience, elasticity, abrasion resistance, efficient heat dispersion, and impact resistance of NR. In NR production, latex is harvested by periodical tapping of the trunk bark. Ethylene enhances and prolongs latex flow and latex regeneration. Ethephon, which is an ethylene-releasing compound, applied to the trunk before tapping usually results in a 1.5- to 2-fold increase in latex yield. However, intense mechanical damage to bark tissues by excessive tapping and/or over-stimulation with ethephon induces severe oxidative stress in laticifer cells, which often causes tapping panel dryness (TPD) syndrome. To enhance NR production without causing TPD, an improved understanding of the molecular mechanism of the ethylene response in the Pará rubber tree is required. Therefore, we investigated gene expression in response to ethephon treatment using Pará rubber tree seedlings as a model system. RESULTS: After ethephon treatment, 3270 genes showed significant differences in expression compared with the mock treatment. Genes associated with carotenoids, flavonoids, and abscisic acid biosynthesis were significantly upregulated by ethephon treatment, which might contribute to an increase in latex flow. Genes associated with secondary cell wall formation were downregulated, which might be because of the reduced sugar supply. Given that sucrose is an important molecule for NR production, a trade-off may arise between NR production and cell wall formation for plant growth and for wound healing at the tapping panel. CONCLUSIONS: Dynamic changes in gene expression occur specifically in response to ethephon treatment. Certain genes identified may potentially contribute to latex production or TPD suppression. These data provide valuable information to understand the mechanism of ethylene stimulation, and will contribute to improved management practices and/or molecular breeding to attain higher yields of latex from Pará rubber trees.


Asunto(s)
Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hevea/genética , Hevea/metabolismo , Látex/metabolismo , Plantones/genética , Plantones/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Genes de Plantas , Indonesia
18.
J Chem Ecol ; 47(6): 564-576, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33881708

RESUMEN

Based on the hypothesis that the variation of the metabolomes of latex is a response to selective pressure and should thus be affected differently from other organs, their variation could provide an insight into the defensive chemical selection of plants. Metabolic profiling was used to compare tissues of three Euphorbia species collected in diverse regions. The metabolic variation of latexes was much more limited than that of other organs. In all the species, the levels of polyisoprenes and terpenes were found to be much higher in latexes than in leaves and roots of the corresponding plants. Polyisoprenes were observed to physically delay the contact of pathogens with plant tissues and their growth. A secondary barrier composed of terpenes in latex and in particular, 24-methylenecycloartanol, exhibited antifungal activity. These results added to the well-known role of enzymes also present in latexes, show that these are part of a cooperative defense system comprising biochemical and physical elements.


Asunto(s)
Euphorbia/metabolismo , Euphorbia/microbiología , Geografía , Herbivoria , Látex/metabolismo , Metabolómica , Euphorbia/fisiología , Especificidad de la Especie
19.
Biosci Biotechnol Biochem ; 85(5): 1147-1156, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33580958

RESUMEN

Ficus carica produces, in addition to the cysteine protease ficin, a serine protease. Earlier study on a serine protease from F. carica cultivar Brown Turkey showed that it specifically degraded collagen. In this study, we characterized the collagenolytic activity of a serine protease in the latex of F. carica cultivar Masui Dauphine. The serine protease degraded denatured, but not undenatured, acid-solubilized type I collagen. It also degraded bovine serum albumin, while the collagenase from Clostridium histolyticum did not. These results indicated that the serine protease in Masui Dauphine is not collagen-specific. The protease was purified to homogeneity by two-dimensional gel electrophoresis, and its partial amino acid sequence was determined by liquid chromatography-tandem mass spectrometry. BLAST searches against the Viridiplantae (green plants) genome database revealed that the serine protease was a subtilisin-like protease. Our results contrast with the results of the earlier study stating that the serine protease from F. carica is collagen-specific.


Asunto(s)
Colágeno/química , Ficus/química , Látex/química , Proteínas de Plantas/metabolismo , Serina Proteasas/metabolismo , Subtilisinas/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Electroforesis en Gel Bidimensional , Ficus/enzimología , Expresión Génica , Calor , Látex/metabolismo , Extractos Vegetales/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Desnaturalización Proteica , Proteolisis , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina Proteasas/química , Serina Proteasas/genética , Serina Proteasas/aislamiento & purificación , Especificidad por Sustrato , Subtilisinas/química , Subtilisinas/genética , Subtilisinas/aislamiento & purificación
20.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32444473

RESUMEN

A cAMP receptor protein (CRPVH2) was detected as a global regulator in Gordonia polyisoprenivorans VH2 and was proposed to participate in the network regulating poly(cis-1,4-isoprene) degradation as a novel key regulator. CRPVH2 shares a sequence identity of 79% with GlxR, a well-studied global regulator of Corynebacterium glutamicum Furthermore, CRPVH2 and GlxR have a common oligomerization state and similar binding motifs, and thus most likely have similar functions as global regulators. Size exclusion chromatography of purified CRPVH2 confirmed the existence as a homodimer with a native molecular weight of 44.1 kDa in the presence of cAMP. CRPVH2 bound to the TGTGAN6TCACT motif within the 131-bp intergenic region of divergently oriented lcp1VH2 and lcpRVH2, encoding a latex clearing protein and its putative repressor, respectively. DNase I footprinting assays revealed the exact operator size of CRPVH2 in the intergenic region (25 bp), which partly overlapped with the proposed promoters of lcpRVH2 and lcp1VH2 Our findings indicate that CRPVH2 represses the expression of lcpRVH2 while simultaneously directly or indirectly activating the expression of lcp1VH2 by binding the competing promoter regions. Furthermore, binding of CRPVH2 to upstream regions of additional putative enzymes of poly(cis-1,4-isoprene) degradation was verified in vitro. In silico analyses predicted 206 CRPVH2 binding sites comprising 244 genes associated with several functional categories, including carbon and peptide metabolism, stress response, etc. The gene expression regulation of several subordinated regulators substantiated the function of CRPVH2 as a global regulator. Moreover, we anticipate that the novel lcpR regulation mechanism by CRPs is widespread in other rubber-degrading actinomycetes.IMPORTANCE In order to develop efficient microbial recycling strategies for rubber waste materials, it is required that we understand the degradation pathway of the polymer and how it is regulated. However, only little is known about the transcriptional regulation of the rubber degradation pathway, which seems to be upregulated in the presence of the polymer. We identified a novel key regulator of rubber degradation (CRPVH2) that regulates several parts of the pathway in the potent rubber-degrader G. polyisoprenivorans VH2. Furthermore, we provide evidence for a widespread involvement of CRP regulators in the degradation of rubber in various other rubber-degrading actinomycetes. Thus, these novel insights into the regulation of rubber degradation are essential for developing efficient microbial degradation strategies for rubber waste materials by this group of actinomycetes.


Asunto(s)
Actinobacteria/genética , Proteínas Bacterianas/genética , Proteína Receptora de AMP Cíclico/genética , Hemiterpenos/metabolismo , Látex/metabolismo , Actinobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteína Receptora de AMP Cíclico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA