Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Amino Acids ; 55(10): 1293-1304, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36565339

RESUMEN

Caffeic acid-O-methyltransferase (COMT), an important enzyme governing the process of lignification in plants, functions at the level of caffeic acid methylation along with 3-O-methylation of monolignol precursors. The present investigation was carried out to decipher the role of COMT in tall fescue lignification and to clone and characterize the COMT gene. The study on COMT activity variation at different growth stages of tall fescue exhibited a significant increase in activity over all the growth stages of tall fescue. A significant relative increase of 47.8% was observed from the first vegetative to reproductive stage. COMT activity exhibited a strong positive correlation with lignin content suggesting it to be an important enzyme of tall fescue lignification. Amplification and sequencing of tall fescue COMT gene resulted in an amplicon of size 1662 (Accession No.-MW442832) and an ORF of 346 amino acids. The deduced protein was hydrophobic, thermally stable and acidic with molecular formula C1679H2623N445O482S20, molecular mass 37.4 kDa and theoretical pI of 6.12. The protein possesses a conserved dimerization domain with a highly conserved SAM binding site. The COMT protein was found to be a homo-dimer with 1 catalytic SAH/SAM ligand per monomer interacting with 14 amino acid residues within 4 Å region.


Asunto(s)
Lignina , Metiltransferasas , Lignina/genética , Lignina/metabolismo , Metiltransferasas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Metilación , Plantas/metabolismo , Ácidos Cafeicos
2.
Angew Chem Int Ed Engl ; 61(8): e202112855, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34882925

RESUMEN

Electron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O-methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate S-adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron-rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one-pot, two whole cell enzyme cascade to produce the l-DOPA precursor l-veratrylglycine from lignin-derived ferulic acid.


Asunto(s)
Levodopa/biosíntesis , Lignina/metabolismo , Metiltransferasas/metabolismo , Biocatálisis , Levodopa/química , Lignina/química , Metilación , Metiltransferasas/química , Estructura Molecular
3.
Plant J ; 99(3): 506-520, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002459

RESUMEN

C-lignin is a linear polymer of caffeyl alcohol, found in the seed coats of several exotic plant species, with promising properties for generation of carbon fibers and high value chemicals. In the ornamental plant Cleome hassleriana, guaiacyl (G) lignin is deposited in the seed coat for the first 6-12 days after pollination, after which G-lignin deposition ceases and C-lignin accumulates, providing an excellent model system to study C-lignin biosynthesis. We performed RNA sequencing of seed coats harvested at 2-day intervals throughout development. Bioinformatic analysis identified a complete set of lignin biosynthesis genes for Cleome. Transcript analysis coupled with kinetic analysis of recombinant enzymes in Escherichia coli revealed that the switch to C-lignin formation was accompanied by down-regulation of transcripts encoding functional caffeoyl CoA- and caffeic acid 3-O-methyltransferases (CCoAOMT and COMT) and a form of cinnamyl alcohol dehydrogenase (ChCAD4) with preference for coniferaldehyde as substrate, and up-regulation of a form of CAD (ChCAD5) with preference for caffealdehyde. Based on these analyses, blockage of lignin monomer methylation by down-regulation of both O-methyltransferases (OMTs) and methionine synthase (for provision of C1 units) appears to be the major factor in diversion of flux to C-lignin in the Cleome seed coat, although the change in CAD specificity also contributes based on the reduction of C-lignin levels in transgenic Cleome with down-regulation of ChCAD5. Structure modeling and mutational analysis identified amino acid residues important for the preference of ChCAD5 for caffealdehyde.


Asunto(s)
Vías Biosintéticas/genética , Lignina/biosíntesis , Proteínas de Plantas/genética , Semillas/genética , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cinética , Lignina/química , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Conformación Proteica , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Especificidad por Sustrato
4.
Biochim Biophys Acta Biomembr ; 1859(12): 2279-2288, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28912104

RESUMEN

Bacterial phospholipid N-methyltransferases (Pmts) catalyze the formation of phosphatidylcholine (PC) via successive N-methylation of phosphatidylethanolamine (PE). They are classified into Sinorhizobium-type and Rhodobacter-type enzymes. The Sinorhizobium-type PmtA protein from the plant pathogen Agrobacterium tumefaciens is recruited to anionic lipids in the cytoplasmic membrane via two amphipathic helices called αA and αF. Besides its enzymatic activity, PmtA is able to remodel membranes mediated by the αA domain. According to the Heliquest program, αA- and αF-like amphipathic helices are also present in other Sinorhizobium- and Rhodobacter-type Pmt enzymes suggesting a conserved architecture of α-helical membrane-binding regions in these methyltransferases. As representatives of the two Pmt families, we investigated the membrane binding and remodeling capacity of Bradyrhizobium japonicum PmtA (Sinorhizobium-type) and PmtX1 (Rhodobacter-type), which act cooperatively to produce PC in consecutive methylation steps. We found that the αA regions in both enzymes bind anionic lipids similar to αA of A. tumefaciens PmtA. Membrane binding of PmtX1 αA is enhanced by its substrate monomethyl-PE indicating a substrate-controlled membrane association. The αA regions of all investigated enzymes remodel spherical liposomes into tubular filaments suggesting a conserved membrane-remodeling capacity of bacterial Pmts. Based on these results we propose that the molecular details of membrane-binding and remodeling are conserved among bacterial Pmts.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Proteínas Bacterianas/química , Liposomas/química , Metiltransferasas/química , Rhodobacter/enzimología , Sinorhizobium/enzimología , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Membrana Celular/química , Membrana Celular/metabolismo , Clonación Molecular , Secuencia Conservada , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Liposomas/metabolismo , Metilación , Metiltransferasas/clasificación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter/genética , Sinorhizobium/genética , Especificidad por Sustrato
5.
Angew Chem Int Ed Engl ; 56(19): 5182-5200, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27943567

RESUMEN

Methyltransferases (MTases) form a large family of enzymes that methylate a diverse set of targets, ranging from the three major biopolymers to small molecules. Most of these MTases use the cofactor S-adenosyl-l-Methionine (AdoMet) as a methyl source. In recent years, there have been significant efforts toward the development of AdoMet analogues with the aim of transferring moieties other than simple methyl groups. Two major classes of AdoMet analogues currently exist: doubly-activated molecules and aziridine based molecules, each of which employs a different approach to achieve transalkylation rather than transmethylation. In this review, we discuss the various strategies for labelling and functionalizing biomolecules using AdoMet-dependent MTases and AdoMet analogues. We cover the synthetic routes to AdoMet analogues, their stability in biological environments and their application in transalkylation reactions. Finally, some perspectives are presented for the potential use of AdoMet analogues in biology research, (epi)genetics and nanotechnology.


Asunto(s)
Biopolímeros/metabolismo , Metiltransferasas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Biopolímeros/química , Metiltransferasas/química , Bibliotecas de Moléculas Pequeñas/química
6.
J Biol Chem ; 290(44): 26715-24, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26378240

RESUMEN

Lignin, a rigid biopolymer in plant cell walls, is derived from the oxidative polymerization of three monolignols. The composition of monolignol monomers dictates the degree of lignin condensation, reactivity, and thus the degradability of plant cell walls. Guaiacyl lignin is regarded as the condensed structural unit. Polymerization of lignin is initiated through the deprotonation of the para-hydroxyl group of monolignols. Therefore, preferentially modifying the para-hydroxyl of a specific monolignol to deprive its dehydrogenation propensity would disturb the formation of particular lignin subunits. Here, we test the hypothesis that specific remodeling the active site of a monolignol 4-O-methyltransferase would create an enzyme that specifically methylates the condensed guaiacyl lignin precursor coniferyl alcohol. Combining crystal structural information with combinatorial active site saturation mutagenesis and starting with the engineered promiscuous enzyme, MOMT5 (T133L/E165I/F175I/F166W/H169F), we incrementally remodeled its substrate binding pocket by the addition of four substitutions, i.e. M26H, S30R, V33S, and T319M, yielding a mutant enzyme capable of discriminately etherifying the para-hydroxyl of coniferyl alcohol even in the presence of excess sinapyl alcohol. The engineered enzyme variant has a substantially reduced substrate binding pocket that imposes a clear steric hindrance thereby excluding bulkier lignin precursors. The resulting enzyme variant represents an excellent candidate for modulating lignin composition and/or structure in planta.


Asunto(s)
Lignina/química , Metiltransferasas/química , Fenoles/química , Proteínas de Plantas/química , Populus/genética , Sustitución de Aminoácidos , Pared Celular/química , Pared Celular/enzimología , Pared Celular/genética , Clonación Molecular , Ácidos Cumáricos , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Biblioteca de Genes , Lignina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Fenoles/metabolismo , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Populus/química , Populus/enzimología , Propionatos/química , Propionatos/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
7.
Mol Microbiol ; 95(2): 313-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25403021

RESUMEN

The membrane lipid phosphatidylcholine (PC) is crucial for stress adaptation and virulence of the plant pathogen Agrobacterium tumefaciens. The phospholipid N-methyltransferase PmtA catalyzes three successive methylations of phosphatidylethanolamine to yield PC. Here, we asked how PmtA is recruited to its site of action, the inner leaflet of the membrane. We found that the enzyme attaches to the membrane via electrostatic interactions with anionic lipids, which do not serve as substrate for PmtA. Increasing PC concentrations trigger membrane dissociation suggesting that membrane binding of PmtA is negatively regulated by its end product PC. Two predicted alpha-helical regions (αA and αF) contribute to membrane binding of PmtA. The N-terminal helix αA binds anionic lipids in vitro with higher affinity than the central helix αF. The latter undergoes a structural transition from disordered to α-helical conformation in the presence of anionic lipids. The basic amino acids R8 and K12 and the hydrophobic amino acid F19 are critical for membrane binding by αA as well as for activity of full-length PmtA. We conclude that a combination of electrostatic and hydrophobic forces is responsible for membrane association of the phospholipid-modifying enzyme.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Proteínas Bacterianas/metabolismo , Metiltransferasas/metabolismo , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/metabolismo , Metiltransferasas/química , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfatidil-N-Metiletanolamina N-Metiltransferasa/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/metabolismo , Electricidad Estática
8.
Proc Natl Acad Sci U S A ; 109(35): 14253-8, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22893684

RESUMEN

The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which was previously classified as a domain of unknown function (DUF) 579 protein, specifically transfers the methyl group from S-adenosyl-L-methionine to O-4 of α-D-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. Biochemical characterization of the recombinant enzyme indicates that GXMT1 is localized in the Golgi apparatus and requires Co(2+) for optimal activity in vitro. Plants lacking GXMT1 synthesize glucuronoxylan in which the degree of 4-O-methylation is reduced by 75%. This result is correlated to a change in lignin monomer composition and an increase in glucuronoxylan release during hydrothermal treatment of secondary cell walls. We propose that the DUF579 proteins constitute a previously undescribed family of cation-dependent, polysaccharide-specific O-methyl-transferases. This knowledge provides new opportunities to selectively manipulate polysaccharide O-methylation and extends the portfolio of structural targets that can be modified either alone or in combination to modulate biopolymer interactions in the plant cell wall.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácido Glucurónico/metabolismo , Metiltransferasas/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Catálisis , Cationes/metabolismo , Pared Celular/enzimología , Éteres/metabolismo , Aparato de Golgi/metabolismo , Lignina/metabolismo , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Mutagénesis/fisiología , Polisacáridos/metabolismo , Estructura Terciaria de Proteína/fisiología , Xilanos/biosíntesis
9.
Genet Mol Res ; 13(3): 7217-38, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25222227

RESUMEN

This study was directed at the understanding of the function of CCoAOMT isolated from Acacia auriculiformis x Acacia mangium. Full length cDNA of the Acacia hybrid CCoAOMT (AhCCoAOMT) was 1024-bp long, containing 750-bp coding regions, with one major open reading frame of 249 amino acids. On the other hand, full length genomic sequence of the CCoAOMT (AhgflCCoAOMT) was 2548 bp long, containing three introns and four exons with a 5' untranslated region (5'UTR) of 391 bp in length. The 5'UTR of the characterized CCoAOMT gene contains various regulatory elements. Southern analysis revealed that the Acacia hybrid has more than three copies of the CCoAOMT gene. Real-time PCR showed that this gene was expressed in root, inner bark, leaf, flower and seed pod of the Acacia hybrid. Downregulation of the homologous CCoAOMT gene in tobacco by antisense (AS) and intron-containing hairpin (IHP) constructs containing partial AhCCoAOMT led to reduction in lignin content. Expression of the CCoAOMT in AS line (pART-HAS78-03) and IHP line (pART-HIHP78-06) was reduced respectively by 37 and 75% compared to the control, resulting in a decrease in the estimated lignin content by 24 and 56%, respectively. AhCCoAOMT was found to have altered not only S and G units but also total lignin content, which is of economic value to the pulp industry. Subsequent polymorphism analysis of this gene across eight different genetic backgrounds each of A. mangium and A. auriculiformis revealed 47 single nucleotide polymorphisms (SNPs) in A. auriculiformis CCoAOMT and 30 SNPs in A. mangium CCoAOMT.


Asunto(s)
Acacia/genética , Acacia/metabolismo , Hibridación Genética , Lignina/biosíntesis , Metiltransferasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Orden Génico , Vectores Genéticos/genética , Metiltransferasas/química , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Tallos de la Planta/citología , Tallos de la Planta/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Alineación de Secuencia , Nicotiana/genética , Nicotiana/metabolismo
10.
Biotechnol Appl Biochem ; 60(2): 170-89, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23600572

RESUMEN

Ten protein sequences, each of caffeic acid-O-methyltransferase (COMT) and caffeoyl-coenzyme A-O-methyltransferase (CCoAOMT), catalyzing methylation of precursors of monolignol from selected dicots and monocots have been analyzed and compared on the basis of their amino acid sequence, motifs/domains, three-dimensional (3D) structure, and substrate binding. The isoelectric points of all the COMT and CCoAOMT sequences analyzed were found to vary in the pH range of 5 to 6. Molecular weight analyses suggested CCoAOMT to be smaller monomeric proteins (27-29 kDa) as compared with those of COMTs (39-40 kDa), which were dimeric. On the basis of phylogenetic analysis, COMT and CCoAOMT were clustered into two major groups, each of which could be further divided into two subgroups of monocots and dicots. Modeling and superimposition of COMT and CCoAOMT sequences of alfalfa (Medicago sativa) revealed that both were quite different at the 3D levels, although they had similarity in the core region. Molecular docking of 16 putative substrates (intermediates of monolignol biosynthesis pathway) revealed that both enzymes interact with all 16 substrates in a similar manner, with thiol esters being the most potent and binding of these putative substrates to CCoAOMT being more efficient.


Asunto(s)
Lignina/biosíntesis , Metiltransferasas/metabolismo , Modelos Moleculares , Metilación , Metiltransferasas/química , Simulación del Acoplamiento Molecular , Filogenia , Relación Estructura-Actividad , Especificidad por Sustrato
11.
Mol Biol Rep ; 39(2): 1601-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21604170

RESUMEN

A cDNA encoding an O-methyltransferase (namely FGCOMT1) was identified from the medicinal plant Trigonella foenum-graecum L. The FGCOMT1 enzyme is a functional caffeic acid O-methyltransferase (COMT) and is localized in the cytosol. Kinetic analysis indicated that FGCOMT1 protein exhibited the highest catalyzing efficiency towards 5-hydroxy ferulic acid and caffeic acid as substrates, but did not possess the abilities to methylate either quercetin or tricetin in vitro. Furthermore, transformation of Arabidopsis loss-of-function Atomt1 mutant with a FGCOMT1 cDNA partially complements accumulation of sinapoyl derivatives but did not function to produce the major methylated flavonol isorhamnetin in seeds. The results from this study indicated that FGCOMT1 is a COMT with substrate preference to monomeric lignin precursors but is not involved in the flavonoid methylation in T. foenum-graecum L.


Asunto(s)
Metiltransferasas/genética , Modelos Moleculares , Filogenia , Trigonella/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Ácidos Cafeicos/metabolismo , Cromatografía Líquida de Alta Presión , Clonación Molecular , Ácidos Cumáricos/metabolismo , Cartilla de ADN/genética , ADN Complementario/genética , Flavonoides/biosíntesis , Flavonoides/química , Prueba de Complementación Genética , Cinética , Lignina/biosíntesis , Lignina/química , Metiltransferasas/química , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Semillas/metabolismo , Análisis de Secuencia de ADN
12.
Plant Physiol ; 153(2): 569-79, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20427467

RESUMEN

Caffeic acid O-methyltransferase (COMT) is a bifunctional enzyme that methylates the 5- and 3-hydroxyl positions on the aromatic ring of monolignol precursors, with a preference for 5-hydroxyconiferaldehyde, on the way to producing sinapyl alcohol. Lignins in COMT-deficient plants contain benzodioxane substructures due to the incorporation of 5-hydroxyconiferyl alcohol (5-OH-CA), as a monomer, into the lignin polymer. The derivatization followed by reductive cleavage method can be used to detect and determine benzodioxane structures because of their total survival under this degradation method. Moreover, partial sequencing information for 5-OH-CA incorporation into lignin can be derived from detection or isolation and structural analysis of the resulting benzodioxane products. Results from a modified derivatization followed by reductive cleavage analysis of COMT-deficient lignins provide evidence that 5-OH-CA cross couples (at its beta-position) with syringyl and guaiacyl units (at their O-4-positions) in the growing lignin polymer and then either coniferyl or sinapyl alcohol, or another 5-hydroxyconiferyl monomer, adds to the resulting 5-hydroxyguaiacyl terminus, producing the benzodioxane. This new terminus may also become etherified by coupling with further monolignols, incorporating the 5-OH-CA integrally into the lignin structure.


Asunto(s)
Lignina/química , Metiltransferasas/química , Fenoles/química , Populus/química , Pared Celular/química , Estructura Molecular
13.
Carbohydr Polym ; 270: 118370, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364615

RESUMEN

Plant cell walls contain cellulose embedded in matrix polysaccharides. Understanding carbohydrate structures and interactions is critical to the production of biofuel and biomaterials using these natural resources. Here we present a solid-state NMR study of cellulose and pectin in 13C-labeled cell walls of Arabidopsis wild-type and mutant plants. Using 1D 13C and 2D 13C-13C correlation experiments, we detected a highly branched arabinan structure in qua2 and tsd2 samples, two allelic mutants for a pectin methyltransferase. Both mutants show close physical association between cellulose and the backbones of pectic homogalacturonan and rhamnogalacturonan-I. Relaxation and dipolar order parameters revealed enhanced microsecond dynamics due to polymer disorder in the mutants, but restricted motional amplitudes due to tighter pectin-cellulose associations. These molecular data shed light on polymer structure and packing in these two pectin mutants, helping to elucidate how pectin could influence cell wall architecture at the nanoscale, cell wall mechanics, and plant growth.


Asunto(s)
Arabidopsis/química , Pared Celular/química , Celulosa/química , Metiltransferasas/química , Pectinas/química , Arabidopsis/enzimología , Pared Celular/enzimología , Celulosa/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Metiltransferasas/metabolismo , Pectinas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
14.
Biochimie ; 90(3): 515-24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17976886

RESUMEN

Caffeic acid 3-O-methyltransferase (COMT) catalyzes the multi-step methylation reactions of hydroxylated monomeric lignin precursors, and is believed to occupy a pivotal position in the lignin biosynthetic pathway. A cDNA (TaCM) was identified from wheat and it was found to be expressed constitutively in stem, leaf and root tissues. The deduced amino acid sequence of TaCM showed a high degree of identity with COMT from other plants, particularly in SAM binding motif and the residues responsible for catalytic and substrate specificity. The predicted TaCM three-dimensional structure is very similar with a COMT from alfalfa (MsCOMT), and TaCM protein had high immunoreactive activity with MsCOMT antibody. Kinetic analysis indicated that the recombinant TaCM protein exhibited the highest catalyzing efficiency towards caffeoyl aldehyde and 5-hydroxyconiferaldehyde as substrates, suggesting a pathway leads to S lignin via aldehyde precursors. Authority of TaCM encoding a COMT was confirmed by the expression of antisense TaCM gene in transgenic tobacco which specifically down-regulated the COMT enzyme activity. Lignin analysis showed that the reduction in COMT activity resulted in a marginal decrease in lignin content but sharp reduction in the syringl lignin. Furthermore, the TaCM protein exhibited a strong activity towards ester precursors including caffeoyl-CoA and 5-hydroxyferuloyl-CoA. Our results demonstrate that TaCM is a typical COMT involved in lignin biosynthesis. It also supports the notion, in agreement with a structural analysis, that COMT has a broad substrate preference.


Asunto(s)
Lignina/biosíntesis , Metiltransferasas/química , Triticum/enzimología , Secuencia de Aminoácidos , ADN Complementario/metabolismo , Genes de Plantas , Cinética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Nicotiana/enzimología , Nicotiana/metabolismo
15.
J Phys Chem B ; 112(51): 16995-7002, 2008 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19368013

RESUMEN

Arginine methylation is a post-translational protein modification that is catalyzed by proteins known as arginine methyl transferases (RMTs). Recently, arginine methylation was postulated as an important modification in modulating biomolecular interactions. RMTs largely target nuclear proteins, so it is highly likely that they aid in modulating protein...DNA interactions. In this study, we probe the influence that sequential guanidinium methylation has on the energetics of the guanidinium...guanine and guanidinium...guanine...cytosine complexes using ab initio and double-hybrid density functional theory (DFT) methods. Structures of guanidinium...guanine complexes derived at the MP2/6-31+G** level of theory show that monomethylated, symmetrically dimethylated, and unsymmetrical dimethylated guanidiniums are all capable of forming guanidinium...guanine complexes. However, when cytosine is involved in a base pair to guanine, only the monomethylated and symmetrically dimethylated guanidinium groups are capable of forming hydrogen bond complexes with guanine. At the B2-PLYP/6-311++G** level of theory, we found that methylation of the guanidinium group stabilizes the formation of the guanidinium... guanine complex relative to the unmethylated guanidinium...guanine complex by approximately 2.5 kcal mol(-1). The biological implication of these findings are discussed.


Asunto(s)
Biopolímeros/química , Citosina/química , Proteínas de Unión al ADN/química , Guanidina/química , Guanina/química , Metiltransferasas/química , Dimerización , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Proteína-Arginina N-Metiltransferasas
16.
J Mol Biol ; 358(2): 546-58, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16527306

RESUMEN

Cephamycin C-producing microorganisms use two enzymes to convert cephalosporins to their 7alpha-methoxy derivatives. Here we report the X-ray structure of one of these enzymes, CmcI, from Streptomyces clavuligerus. The polypeptide chain of the enzyme folds into a C-terminal Rossmann domain and a smaller N-terminal domain, and the molecule packs as a hexamer in the crystal. The Rossmann domain binds S-adenosyl-L-methionine (SAM) and the demethylated product, S-adenosyl-L-homocysteine, in a fashion similar to the common binding mode of this cofactor in SAM-dependent methyltransferases. There is a magnesium-binding site in the vicinity of the SAM site with a bound magnesium ion ligated by residues Asp160, Glu186 and Asp187. The expected cephalosporin binding site near the magnesium ion is occupied by polyethyleneglycol (PEG) from the crystallisation medium. The geometry of the SAM and the magnesium binding sites is similar to that found in cathechol O-methyltransferase. The results suggest CmcI is a methyltransferase, and its most likely function is to catalyse the transfer of a methyl group from SAM to the 7alpha-hydroxy cephalosporin in the second catalytic reaction of cephamycin formation. Based on the docking of the putative substrate, 7alpha-hydroxy-O-carbamoyldeacetylcephalosporin C, to the structure of the ternary CmcI-Mg2+-SAM complex, we propose a model for substrate binding and catalysis. In this model, the 7-hydroxy group of the beta-lactam ring ligates the Mg2+ with its alpha-side facing the methyl group of SAM at a distance that would allow methylation of the hydroxyl-group.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Cefamicinas/biosíntesis , Metiltransferasas/química , Oxigenasas de Función Mixta/química , Complejos Multienzimáticos/química , Streptomyces/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cefalosporinas/metabolismo , Cristalización , Cristalografía por Rayos X , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Polietilenglicoles , Unión Proteica , Estructura Terciaria de Proteína , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Homología de Secuencia de Aminoácido
17.
Nat Commun ; 7: 11989, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27349324

RESUMEN

Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens' lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.


Asunto(s)
Biocombustibles , Etanol/metabolismo , Lignina/metabolismo , Metiltransferasas , Populus/enzimología , Biomasa , Pared Celular/metabolismo , Fermentación , Ingeniería Genética , Metiltransferasas/química , Metiltransferasas/genética , Fenoles/metabolismo , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Populus/anatomía & histología , Populus/genética , Populus/crecimiento & desarrollo
18.
Plant J ; 48(1): 113-24, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16972868

RESUMEN

Genes encoding seven enzymes of the monolignol pathway were independently downregulated in alfalfa (Medicago sativa) using antisense and/or RNA interference. In each case, total flux into lignin was reduced, with the largest effects arising from the downregulation of earlier enzymes in the pathway. The downregulation of l-phenylalanine ammonia-lyase, 4-coumarate 3-hydroxylase, hydroxycinnamoyl CoA quinate/shikimate hydroxycinnamoyl transferase, ferulate 5-hydroxylase or caffeic acid 3-O-methyltransferase resulted in compositional changes in lignin and wall-bound hydroxycinnamic acids consistent with the current models of the monolignol pathway. However, downregulating caffeoyl CoA 3-O-methyltransferase neither reduced syringyl (S) lignin units nor wall-bound ferulate, inconsistent with a role for this enzyme in 3-O-methylation ofS monolignol precursors and hydroxycinnamic acids. Paradoxically, lignin composition differed in plants downregulated in either cinnamate 4-hydroxylase or phenylalanine ammonia-lyase. No changes in the levels of acylated flavonoids were observed in the various transgenic lines. The current model for monolignol and ferulate biosynthesis appears to be an over-simplification, at least in alfalfa, and additional enzymes may be needed for the 3-O-methylation reactions of S lignin and ferulate biosynthesis.


Asunto(s)
Pared Celular/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/biosíntesis , Medicago sativa/enzimología , Proteínas de Plantas/fisiología , Ácidos Cumáricos/química , Regulación hacia Abajo , Flavonoides/química , Flavonoides/metabolismo , Lignina/química , Medicago sativa/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasas/fisiología , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
19.
Cytogenet Cell Genet ; 95(3-4): 146-52, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-12063391

RESUMEN

As part of our studies to identify the gene responsible for hereditary gingival fibromatosis, GINGF (OMIM 135300), we have identified and cloned a novel human gene that contains the highly conserved methyltransferase domain characteristic of S-adenosylmethionine-dependent methyltransferases. We localized this gene (C2orf8 encoding 288L6 SAM-methyltransferase) to chromosome 2p22-->p21 by FISH, and sublocalized it to BAC RP11 288L6 flanked by D2S2238 and D2S2331. Computational analysis of aligned ESTs identified ten exons in the hypothetical C2orf8 gene. Results of RACE analyses in placenta identified multiple transcripts of this gene with heterogeneity at the 5'-UTR. Alternative transcription and tissue specific expression of C2orf8 were detected by RT-PCR and Northern blot analyses. C2orf8 is expressed in a variety of tissues including brain, colon, gingiva, heart, kidney, liver, lung, placenta, small intestine, spleen, and thymus. Open reading frame analysis of the alternative transcripts identified a shared coding region spanning exons 6-10. This ORF consists of 732 nucleotides encoding a putative 244 amino acid protein. Bioinformational searches of both C2orf8 and the putative protein product identified three methyltransferase motifs conserved across many prokaryotic and eukaryotic species. Sequence analyses of C2orf8 excluded coding region mutations as causative of GINGF.


Asunto(s)
Cromosomas Humanos Par 2 , Fibromatosis Gingival/genética , Metiltransferasas/genética , Transcripción Genética/genética , Secuencia Conservada , Análisis Mutacional de ADN , Exones , Expresión Génica , Encía/fisiología , Humanos , Intrones , Metiltransferasas/química , Datos de Secuencia Molecular , Mutación/genética , Placenta/fisiología , Estructura Terciaria de Proteína/genética , Homología de Secuencia de Aminoácido
20.
Plant Cell ; 14(6): 1265-77, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12084826

RESUMEN

Caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase (COMT) from alfalfa is an S-adenosyl-L-Met-dependent O-methyltransferase involved in lignin biosynthesis. COMT methylates caffeoyl- and 5-hydroxyferuloyl-containing acids, aldehydes, and alcohols in vitro while displaying a kinetic preference for the alcohols and aldehydes over the free acids. The 2.2-A crystal structure of COMT in complex with S-adenosyl-L-homocysteine (SAH) and ferulic acid (ferulate form), as well as the 2.4-A crystal structure of COMT in complex with SAH and 5-hydroxyconiferaldehyde, provide a structural understanding of the observed substrate preferences. These crystal structures identify residues lining the active site surface that contact the substrates. Structurally guided site-directed mutagenesis of active site residues was performed with the goal of altering the kinetic preferences for physiological substrates. The kinetic parameters of the COMT mutants versus wild-type enzyme are presented, and coupled with the high-resolution crystal structures, they will serve as a starting point for the in vivo manipulation of lignin monomers in transgenic plants. Ultimately, this structurally based approach to metabolic engineering will allow the further alteration of the lignin biosynthetic pathway in agronomically important plants. This approach will lead to a better understanding of the in vivo operation of the potential metabolic grid for monolignol biosynthesis.


Asunto(s)
Ácidos Cafeicos/metabolismo , Lignina/biosíntesis , Metiltransferasas/química , Metiltransferasas/metabolismo , Plantas/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Metilación , Conformación Molecular , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA