Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mediators Inflamm ; 2020: 8704896, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714091

RESUMEN

Human periodontal ligament stromal cells (hPDLSCs) and gingival mesenchymal stromal cells (hGMSCs) are resident mesenchymal stromal cells (MSCs) of the periodontal tissue. The lipopolysaccharide (LPS) from Porphyromonas gingivalis is structurally distinct from that of other Gram-negative bacteria, and earlier studies linked this structural difference to a distinct virulence activity and the ability to activate toll-like receptor 2 (TLR-2), besides TLR-4 as commonly occurring upon LPS challenge. Later studies, in contrast, argue that TLR-2 activation by P. gingivalis LPS is due to lipoprotein contamination. In the present study, we aimed to define the influence of structure versus purity of P. gingivalis LPS on the immune response of hPDLSCs and hGMSCs. Cells were stimulated with commercially available "standard" P. gingivalis LPS, "ultrapure" P. gingivalis LPS, or "ultrapure" Escherichia coli LPS, and the expression of interleukin- (IL-) 8, IL-6, monocyte chemoattractant protein- (MCP-) 1, TLR-2, and TLR-4 was evaluated. The contribution of TLR-4 to the LPS-induced response was assessed using the specific TLR-4 inhibitor TAK-242. "Standard" P. gingivalis LPS induced significantly higher IL-8, IL-6, and MCP-1 production compared to the "ultrapure" LPS preparations, with no significant difference detectable for "ultrapure" LPS from P. gingivalis and E. coli. By using TAK-242, the response of hPDLSCs and hGMSCs to "ultrapure" LPS preparations was effectively inhibited to the levels comparable to those of nonstimulated controls. In contrast, high levels of response to "standard" LPS were observed, even in the presence of TAK-242. Our data show that the response of MSCs from periodontal tissue to LPS depends more on the purity of the LPS preparation than on the LPS source. Even a small amount of contaminating lipoproteins can drastically enhance the hPDLSCs' and hGMSCs; responsiveness to P. gingivalis LPS, which might also contribute to the progression of periodontal disease.


Asunto(s)
Lipopolisacáridos/farmacología , Células Madre Mesenquimatosas/citología , Porphyromonas gingivalis/citología , Supervivencia Celular/fisiología , Células Cultivadas , Quimiocina CCL2/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Reacción en Cadena de la Polimerasa , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
2.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30642895

RESUMEN

Periodontitis is a progressive inflammatory disease that affects roughly half of American adults. Colonization of the oral cavity by the Gram-negative bacterial pathogen Porphyromonas gingivalis is a key event in the initiation and development of periodontal disease. Adhesive surface structures termed fimbriae (pili) mediate interactions of P. gingivalis with other bacteria and with host cells throughout the course of disease. The P. gingivalis fimbriae are assembled via a novel mechanism that involves proteolytic processing of lipidated precursor subunits and their subsequent polymerization on the bacterial surface. Given their extracellular assembly mechanism and central roles in pathogenesis, the P. gingivalis fimbriae are attractive targets for anti-infective therapeutics to prevent or treat periodontal disease. Here we confirm that conserved sequences in the N and C termini of the Mfa1 fimbrial subunit protein perform critical roles in subunit polymerization. We show that treatment of P. gingivalis with peptides corresponding to the conserved C-terminal region inhibits the extracellular assembly of Mfa fimbriae on the bacterial surface. We also show that peptide treatment interferes with the function of Mfa fimbriae by reducing P. gingivalis adhesion to Streptococcus gordonii in a dual-species biofilm model. Finally, we show that treatment of bacteria with similar peptides inhibits extracellular polymerization of the Fim fimbriae, which are also expressed by P. gingivalis These results support a donor strand-based assembly mechanism for the P. gingivalis fimbriae and demonstrate the feasibility of using extracellular peptides to disrupt the biogenesis and function of these critical periodontal disease virulence factors.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Porphyromonas gingivalis/fisiología , Biopelículas , Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Porphyromonas gingivalis/citología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30552185

RESUMEN

The asaccharolytic anaerobe Porphyromonas gingivalis metabolizes proteins it encounters in the periodontal pocket, including host-derived glycoproteins such as mucins and immunoglobulins. Often, these proteins are protected by a diverse array of carbohydrates tethered to the polypeptide chain via glycolytic bonds, and P. gingivalis produces enzymes capable of liberating these carbohydrates, exposing the proteinaceous core. In this study, we investigated the effect of individual monosaccharides, including galactose, l-fucose, mannose, and glucose, on the growth and physiology of P. gingivalis Of the carbohydrates tested, only galactose noticeably altered the density of the bacterial culture, and we observed that cultures grown with galactose reached significantly higher densities during stationary phase. Importantly, electron micrographs and plating of P. gingivalis in stationary phase demonstrated that the presence of galactose did not increase cell numbers; instead, the higher densities resulted from the expansion of individual cells which contained large intracellular granules. Initial attempts to characterize these granules revealed only a subtle increase in soluble carbohydrates, suggesting they are likely not composed of stored carbohydrate. Also, an analysis of major surface polysaccharides via an enzyme-linked immunosorbent assay (ELISA) did not reveal significant differences between cells grown with or without galactose. Finally, an initial investigation of the transcriptional changes elicited by galactose in late exponential phase suggested that genes important for cell shape and for the general stress response may play roles in this phenomenon. Overall, galactose, a monosaccharide commonly present on the surfaces of host proteins, substantially alters the physiology of P. gingivalis via the production of large, currently undefined, intracellular granules.IMPORTANCE Environmental perturbations are central to the ability of pathobionts, such as Porphyromonas gingivalis, to promote the development of diseased sites. In the case of periodontal disease, increased local pH, a shift to anaerobic surroundings, and the accumulation of Gram-negative anaerobes at the expense of Gram-positive cocci are known ecological fluctuations prominently associated with progression toward disease. Importantly, in contrast, the alterations to subgingival food webs in disease sites remain poorly characterized. We hypothesized that given the dramatic shift in community structure during disease, it is possible that free carbohydrates, which would typically be readily metabolized by Gram-positive cocci after cleavage from glycoproteins, may increase in concentration locally and thereby affect the physiological state of the subgingival microbiota. In this study, we explored the impact of free monosaccharides on P. gingivalis to gain deeper insight into the effect of dysbiotic conditions on the growth and physiology of this periodontal pathogen.


Asunto(s)
Galactosa/metabolismo , Porphyromonas gingivalis/crecimiento & desarrollo , Porphyromonas gingivalis/fisiología , Medios de Cultivo/química , Fucosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Manosa/metabolismo , Enfermedades Periodontales/microbiología , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/genética , Transcriptoma
4.
J Proteome Res ; 17(7): 2377-2389, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29766714

RESUMEN

Porphyromonas gingivalis is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. P. gingivalis has an obligate requirement for heme, which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the P. gingivalis proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analyzed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified, with 108 and 49 proteins significantly changing in abundance more than 1.5-fold ( p < 0.05) in the WCLs and OMVs, respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme, whereas the four proteins most upregulated under the heme-excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed onto OMVs; however, 16 proteins were preferentially packaged into OMVs under one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess.


Asunto(s)
Micropartículas Derivadas de Células/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hemo/farmacología , Porphyromonas gingivalis/química , Proteoma/metabolismo , Proteínas de la Membrana Bacteriana Externa , Micropartículas Derivadas de Células/efectos de los fármacos , Hemo/análisis , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/ultraestructura , Proteoma/efectos de los fármacos
5.
J Biol Chem ; 291(11): 5913-5925, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26733202

RESUMEN

Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser(615) and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 µm(-1) s(-1), optimal pH was 7-8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met(16)-Glu(101)). Three-dimensional modeling revealed the three domain structures (residues Met(16)-Ala(126), which has no similar homologue with known structure; residues Leu(127)-Met(495) (ß-propeller domain); and residues Ala(496)-Phe(736) (α/ß-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides.


Asunto(s)
Infecciones por Bacteroidaceae/microbiología , Exopeptidasas/metabolismo , Oligopéptidos/metabolismo , Péptido Hidrolasas/metabolismo , Porphyromonas gingivalis/enzimología , Acilación , Secuencia de Aminoácidos , Exopeptidasas/análisis , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oligopéptidos/química , Péptido Hidrolasas/análisis , Porphyromonas gingivalis/química , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/metabolismo , Conformación Proteica , Multimerización de Proteína
6.
Microb Pathog ; 113: 396-402, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29101062

RESUMEN

The antibacterial effect and mechanism of eugenol from Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf essential oil (CLEO) against oral anaerobe Porphyromonas gingivalis were investigated. The results showed that eugenol, with content of 90.84% in CLEO, exhibited antibacterial activity against P. gingivalis at a concentration of 31.25 µM. Cell shrink and lysis caused by eugenol were observed with Scanning Electron Microscopy (SEM). The release of macromolecules and uptake of fluorescent dye indicated that the antibacterial activity was due to the ability of eugenol to permeabilize the cell membrane and destroy the integrity of plasmatic membrane irreversibly. In addition, eugenol inhibited biofilm formation and reduced preformed biofilm of P. gingivalis at different concentrations. The down-regulation of virulence factor genes related to biofilm (fimA, hagA, hagB, rgpA, rgpB, kgp) explained that eugenol suppressed biofilm formation at the initial stage. These findings suggest that eugenol and CLEO may be potential additives in food and personal healthcare products as a prophylactic approach to periodontitis.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Eugenol/farmacología , Aceites Volátiles/farmacología , Exudados de Plantas/farmacología , Hojas de la Planta/química , Porphyromonas gingivalis/efectos de los fármacos , Syzygium/química , Biopelículas/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Regulación hacia Abajo , Cromatografía de Gases y Espectrometría de Masas/métodos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Periodontitis/microbiología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/crecimiento & desarrollo , Factores de Virulencia/genética
7.
Microb Pathog ; 99: 196-203, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27565090

RESUMEN

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 µM and 200 µM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 µM, and a respective minimum bactericidal concentration (MBC) of 12.5 µM and 25 µM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 µM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 µM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 µM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 µM EPA. For exponential-phase bacteria, 100 µM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 µM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention and treatment of periodontal diseases.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Fusobacterium nucleatum/efectos de los fármacos , Porphyromonas gingivalis/efectos de los fármacos , Antibacterianos/toxicidad , Biopelículas/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ácidos Docosahexaenoicos/toxicidad , Ácido Eicosapentaenoico/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Formazáns/análisis , Fusobacterium nucleatum/citología , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiología , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/fisiología , Coloración y Etiquetado , Sales de Tetrazolio/análisis , Factores de Virulencia/análisis
8.
Beijing Da Xue Xue Bao Yi Xue Ban ; 47(5): 809-13, 2015 Oct 18.
Artículo en Zh | MEDLINE | ID: mdl-26474621

RESUMEN

OBJECTIVE: To investigate molecular mechanism involved in nicotine in combination with Porphyromonas gingivalis (P.g) caused monocyte-endothelial cell adhesion. METHODS: The effect of nicotine, P.g-lipopolysaccharide (P.g-LPS) and their combination on the proliferation of U937 cells was determined by CCK-8 method. Interleukin-6 (IL-6) expression was investigated by real-time PCR after U937 cells were treated with nicotine, P.g-LPS and their combination. In human umbilical vein endothelial cells (HUVECs), the expressions of monocyte chemoattractant protein CCL-8 and adhesion molecules including vascular cell adhesion molecule 1 (Vcam-1), very late antigen 4 alpha (VLA4α), tumor necrosis factor receptor superfamily member 4 (OX40) and OX40 ligand (OX40L) were detected by real-time PCR or Western blotting assays after HUVEC cells were treated with nicotine, P.g-LPS and their combination. Adhesion of monocytes to endothelial cells was detected after the HUVECs and U937 cells were stimulated with nicotine, P.g-LPS and their combination, respectively. RESULTS: P.g-LPS did not affect the proliferative ability of nicotine in U937 cells. However, the ability of P.g-LPS induced IL-6 expression was inhibited by 100 µmol/L nicotine in U937 cells. In HUVECs, the expressions of CCL-8, Vcam-1, VLA4α, OX40 and OX40L were significantly up-regulated by nicotine and P.g-LPS combination compared with nicotine alone, P.g-LPS alone and the untreated control. Adhesion of monocytes to HUVECs results showed that the two types of cells treated with nicotine in combination with P.g-LPS could markedly increase the adhesion ability of monocytes to HUVECs. CONCLUSION: P.g-LPS in combination with nicotine could recruit monocytes to endothelial lesion through up-regulation of CCL-8, and promote adhesion of monocytes to endothelial cells through enhancement of Vcam-1/VLA4α and OX40/OX40L interactions, which could be involved in the initiation and development of atherosclerosis.


Asunto(s)
Adhesión Celular , Células Endoteliales de la Vena Umbilical Humana/citología , Lipopolisacáridos/farmacología , Monocitos/citología , Nicotina/farmacología , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Humanos , Interleucina-6/metabolismo , Monocitos/efectos de los fármacos , Porphyromonas gingivalis/citología , Regulación hacia Arriba
9.
J Asian Nat Prod Res ; 16(10): 1009-17, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25263652

RESUMEN

Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 µM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.


Asunto(s)
Antiinflamatorios/farmacología , Flavonoides/farmacología , Lipopolisacáridos/farmacología , Antiinflamatorios/química , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/efectos de los fármacos , Dinoprostona/metabolismo , Fibroblastos/efectos de los fármacos , Flavonoides/química , Flavonoles , Encía/citología , Encía/efectos de los fármacos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estructura Molecular , FN-kappa B/metabolismo , Porphyromonas gingivalis/citología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
J Photochem Photobiol B ; 241: 112670, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36841175

RESUMEN

BACKGROUND: Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS: Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS: A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS: aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.


Asunto(s)
Color , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Hierro , Luz , Porfirinas , Porphyromonas gingivalis , Porfirinas/metabolismo , Hierro/metabolismo , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/efectos de la radiación , Transporte Biológico/genética , Transporte Biológico/efectos de la radiación , Humanos , Encía/citología , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Radical Hidroxilo/metabolismo , Hemo/metabolismo , Regulación hacia Arriba/efectos de la radiación , Homeostasis/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Aerobiosis , Genes Bacterianos/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/efectos de la radiación
11.
Infect Immun ; 79(11): 4533-42, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21911459

RESUMEN

Periodontal disease is a chronic oral inflammatory disease that is triggered by bacteria such as Porphyromonas gingivalis. P. gingivalis strains exhibit great heterogeneity, with some strains being encapsulated while others are nonencapsulated. Although the encapsulated strains have been shown to be more virulent in a mouse abscess model, so far the role of the capsule in P. gingivalis interactions with host cells is not well understood and its role in virulence has not been defined. Here, we investigated the contribution of the capsule to triggering a host response following microbial infection, as well as its protective role following bacterial internalization by host phagocytic cells with subsequent killing, using the encapsulated P. gingivalis strain W50 and its isogenic nonencapsulated mutant, PgC. Our study shows significant time-dependent upregulation of the expression of various groups of genes in macrophages challenged with both the encapsulated and nonencapsulated P. gingivalis strains. However, cells infected with the nonencapsulated strain showed significantly higher upregulation of 9 and 29 genes at 1 h and 8 h postinfection, respectively, than cells infected with the encapsulated strain. Among the genes highly upregulated by the nonencapsulated PgC strain were ones coding for cytokines and chemokines. Maturation markers were induced at a 2-fold higher rate in dendritic cells challenged with the nonencapsulated strain for 4 h than in dendritic cells challenged with the encapsulated strain. The rates of phagocytosis of the nonencapsulated P. gingivalis strain by both macrophages and dendritic cells were 4.5-fold and 7-fold higher, respectively, than the rates of phagocytosis of the encapsulated strain. On the contrary, the survival of the nonencapsulated P. gingivalis strain was drastically reduced compared to the survival of the encapsulated strain. Finally, the encapsulated strain exhibited greater virulence in a mouse abscess model. Our results indicate that the P. gingivalis capsule plays an important role in aiding evasion of host immune system activation, promoting survival of the bacterium within host cells, and increasing virulence. As such, it is a major virulence determinant of P. gingivalis.


Asunto(s)
Cápsulas Bacterianas/fisiología , Infecciones por Bacteroidaceae/microbiología , Inflamación/microbiología , Fagocitosis/fisiología , Porphyromonas gingivalis/inmunología , Porphyromonas gingivalis/patogenicidad , Animales , Cápsulas Bacterianas/inmunología , Células Dendríticas/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Porphyromonas gingivalis/citología , Virulencia
12.
Lab Chip ; 10(12): 1557-60, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20517558

RESUMEN

In this study, a novel method for detecting bacterial cells in deionized (DI) water suspension is presented by using fluidic electrodes with a hydrodynamic focusing technique. KCl solution was utilized as both sheath flow and fluidic electrodes, and the bacterial suspension was squeezed to form three flowing layers with different conductivities on a microfluidic chip. An impedance analyzer was connected with the KCl solution through two Ag/AgCl wires to apply an AC voltage to fluidic layers within a certain frequency for impedance measurements. Porphyromonas gingivalis and Escherichia coli were detected and linear relationships were found between the impedance and the logarithmic value of the bacterial concentration in certain cell concentration ranges. It is demonstrated that bacterial detection using the microdevice is rapid and convenient, with a chip made of simple flow channels, and the detection sensitivity of cell counting can be tuned by varying the width of the sample flow layer through changing input velocities, showing a detection limit of 10(3) cells mL(-1).


Asunto(s)
Bacterias/citología , Técnicas Analíticas Microfluídicas , Bacterias/aislamiento & purificación , Impedancia Eléctrica , Electrodos , Escherichia coli/citología , Escherichia coli/aislamiento & purificación , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/aislamiento & purificación , Agua/química
13.
Org Biomol Chem ; 7(14): 2855-63, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19582294

RESUMEN

Periodontal disease is an inflammatory process affecting supporting tissues surrounding the teeth. The anaerobic gram-negative bacterium Porphyromonas gingivalis is implicated in the disease. This organism requires the uptake of porphyrins most apparently as haem 1 from local haemorrhage and it has a HA2 receptor on the outer membrane for this purpose that provides the opportunity to achieve selective anti-microbial activity. Uniquely, this receptor is based on recognition of porphyrin macrocycle and on a propionic acid side-chain rather than recognition of the coordinated metal ion through chelation, a process used by other organisms with the HasA porphyrin receptor. Porphyrin-antibiotic conjugates 11, 12, 13a and 13b were designed as potential highly selective P. gingivalis inhibitors, a key point being that they are based on the use of free-base porphyrins to render them unpalatable to other organisms. These compounds were synthesised from metronidazole 4 and deuteroporphyrin IX 3. Conjugates 11, 12, 13a and 13b are all recognised by the HA2 receptor of P. gingivalis, bind as strongly as haem 1 to HA2 and are highly effective. For example, the amide-linked mono-metronidazole mono-acid adducts 11 and 12 have the same growth inhibitory activity towards P. gingivalis and both are two-fold more active than metronidazole 4 and ten- to twenty-fold more effective than the metronidazole derivative, amine 5. The methyl esters 9 and 10, in contrast, are not recognised by HA2 and are ineffective in inhibiting P. gingivalis, leading to the conclusion that capture by HA2 may be necessary for activity of the adducts. Preliminary growth inhibition assays involving a range of bacteria have demonstrated the high selectivity of conjugates 13a and 13b towards P. gingivalis.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Metronidazol/química , Metronidazol/farmacología , Porfirinas/química , Porphyromonas gingivalis/efectos de los fármacos , Amidas/química , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Ésteres/química , Metronidazol/síntesis química , Metronidazol/metabolismo , Porphyromonas gingivalis/citología
14.
Oral Microbiol Immunol ; 24(2): 133-40, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19239640

RESUMEN

INTRODUCTION: The current detection methods for periodontopathogens mainly use polymerase chain reactions. However, there are few methods available for visualizing the bacteria that impact on patients with periodontal disease for use in health education. The purpose of this study was to develop a specific detection method to visualize periodontopathogenic bacteria. METHODS: Fluorescently-labeled oligonucleotide probes directed to specific 16S ribosomal RNA (rRNA) sequences of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were synthesized. Cultured individual bacterial species were fixed with 4% paraformaldehyde and smeared on glass slides. Fluorescein isothiocyanate-labeled oligonucleotide probes were hybridized under stringent conditions with smeared whole cells, and then probe specificity was investigated by epifluorescence microscopy. RESULTS: Comparatively long (50-mer) oligonucleotide probes for P. gingivalis and A. actinomycetemcomitans were designed. These probes clearly hybridized with 16S rRNA of the target species in situ and single bacterial cells were detectable visually. The probes exhibited no cross-hybridization against the additional organisms that were closely related to the target species. CONCLUSIONS: The fluorescence in situ hybridization technique is a specific and reliable method by which to visually identify the target organisms. The oligonucleotide probes designed in this study will be useful for detecting P. gingivalis and A. actinomycetemcomitans populations.


Asunto(s)
Aggregatibacter actinomycetemcomitans/citología , Sondas de Oligonucleótidos/síntesis química , Educación del Paciente como Asunto/métodos , Porphyromonas gingivalis/citología , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/aislamiento & purificación , ADN Bacteriano/análisis , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/aislamiento & purificación , ARN Ribosómico 16S/genética , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
15.
Nanoscale ; 11(19): 9526-9532, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31049503

RESUMEN

Fluorescent materials can be powerful contrast agents in photoelectric devices and for bioimaging. As emerging fluorescent materials, carbonized polymer dots (CPDs) with high quantum yields (QYs), long-wavelength emission and multiple functions are highly desired. Despite great progress in the synthetic methods and QYs of CPDs, multiple emission of CPDs is challenging. Therefore, we developed CPDs with dual-emission fluorescence in terms of inherent blue and red emission. In addition, CPDs with sole blue emission (B-CPDs) and red emission (R-CPDs) were synthesized, respectively, by regulating the reaction conditions to control the quantitative structure and emission centers. The absolute QY of R-CPDs in water was 24.33%. These three types of CPDs with dual/sole emission could be used in optoelectronic and bioimaging applications. With different CPDs coated on a commercially available gallium nitride light-emitting diode chip as a color-conversion layer, LEDs with blue, yellow, and red emission were achieved. Benefiting from the different emission intensities and emission peaks of R/B-CPDs in different pH conditions, they were used (without further modification) to distinguish between Porphyromonas gingivalis, Streptococcus mutans, Escherichia coli and Staphylococcus aureus in dental plaque biofilms (the first time this has been demonstrated). These findings could enable a new development direction of CPDs based on the design of multi-emission centers.


Asunto(s)
Bacterias/citología , Colorantes Fluorescentes/química , Polímeros/química , Puntos Cuánticos/química , Animales , Bacterias/aislamiento & purificación , Biopelículas , Carbono/química , Línea Celular , Placa Dental/microbiología , Placa Dental/patología , Escherichia coli/citología , Escherichia coli/aislamiento & purificación , Ratones , Microscopía Confocal , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/aislamiento & purificación , Ratas , Staphylococcus aureus/citología , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/fisiología , Streptococcus mutans/citología , Streptococcus mutans/aislamiento & purificación
16.
Int J Biol Macromol ; 122: 19-28, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30287380

RESUMEN

A novel glucose-sensitive drug delivery system with controlled release of metronidazole was synthesized by using biocompatible photo-crosslinked chitosan hydrogel film. Specifically, methacrylic anhydride, as photosensitive substance, was firstly grafted on chitosan molecular chains and then UV irradiation was applied as the crosslinking method. Glucose sensitivity was endowed by immobilizing glucose oxidase on the surface of chitosan film. The physicochemical characteristics including chemical composition, crosslinking degree, mechanical strength and related enzyme properties were investigated successively. Cytotoxicity test, drug release and anti-bacterial test were carried out, respectively. The results show that this photo-crosslinked hydrogel film has good mechanical properties; meanwhile, the immobilized enzyme's bonding capacity and activity can maintain a relatively high level after surface activation. In addition, this material possesses better biocompatibility than chemical crosslinked samples. What's more, it can sense the ambient glucose stimulus, rapidly and correspondingly adjust its inner pore structure to control the loaded metronidazole release, lead to an improved antimicrobial activity against Porphyromonas gingivalis under high glucose concentration. This glucose sensitive hydrogel film may provide a promising method for diabetic's periodontitis therapy in clinic.


Asunto(s)
Quitosano/química , Glucosa/metabolismo , Metilgalactósidos/química , Metronidazol/química , Metronidazol/farmacología , Procesos Fotoquímicos , Porphyromonas gingivalis/efectos de los fármacos , Células 3T3 , Animales , Antibacterianos/química , Antibacterianos/farmacología , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Liberación de Fármacos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Ensayo de Materiales , Ratones , Pruebas de Sensibilidad Microbiana , Porphyromonas gingivalis/citología
17.
Cell Struct Funct ; 33(1): 123-32, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18388398

RESUMEN

Porphyromonas gingivalis, a periodontal pathogen, was previously suggested to exploit alpha5beta1 integrin and lipid rafts to invade host cells. However, it is unknown if the functional roles of these host components are distinct from one another during bacterial invasion. In the present study, we analyzed the mechanisms underlying P. gingivalis invasion, using fluorescent beads coated with bacterial membrane vesicles (MV beads). Cholesterol depletion reagents including methyl-beta-cyclodextrin (MbetaCD) drastically inhibited the entry of MV beads into epithelial cells, while they were less effective on bead adhesion to the cells. Bead entry was also abolished in CHO cells deficient in sphingolipids, components of lipid rafts, whereas adhesion was negligibly influenced. Following MbetaCD treatment, downstream events leading to actin polymerization were abolished; however, alpha5beta1 integrin was recruited to beads attached to the cell surface. Dominant-negative Rho GTPase Rac1 abolished cellular engulfment of the beads, whereas dominant-negative Cdc42 did not. Following cellular interaction with the beads, Rac1 was found to be translocated to the lipid rafts fraction, which was inhibited by MbetaCD. These results suggest that alpha5beta1 integrin, independent of lipid rafts, promotes P. gingivalis adhesion to epithelial cells, while the subsequent uptake process requires lipid raft components for actin organization, with Rho GTPase Rac1.


Asunto(s)
Adhesión Bacteriana/fisiología , Células Epiteliales/fisiología , Colorantes Fluorescentes/química , Integrina alfa5beta1/metabolismo , Microdominios de Membrana/metabolismo , Porphyromonas gingivalis/fisiología , Actinas/efectos de los fármacos , Actinas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Células Cultivadas , Colesterol/metabolismo , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Microesferas , Porphyromonas gingivalis/citología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Esfingolípidos/metabolismo , Propiedades de Superficie , beta-Ciclodextrinas/farmacología , Proteína de Unión al GTP cdc42/efectos de los fármacos , Proteína de Unión al GTP cdc42/fisiología , Proteína de Unión al GTP rac1/efectos de los fármacos , Proteína de Unión al GTP rac1/fisiología
18.
Anticancer Res ; 28(2A): 699-707, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18507010

RESUMEN

Curcumin and its reduced derivative tetrahydrocurcumin have been shown to exhibit chemopreventive activity. Cyclooxygenase-2 (COX-2) inhibition in lipopolysaccharide (LPS)- or Porphyromonas gingivalis fimbria-stimulated RAW 264.7 cells was investigated using Northern blot analysis. The fimbria-stimulated expression of the COX-2 gene was inhibited by curcumin but not by tetrahydrocurcumin. LPS-stimulated COX-2 gene expression was completely inhibited by curcumin, but an increase in the concentration of tetrahydrocurcumin did not cause complete inhibition of COX-2 expression. The inhibitory effect of curcumin on nuclear factor kappa B (NF-kappaB) activation in the cells was clearly observed, but that of tetrahydrocurcumin was incomplete even at a concentration of 20 microM. To explain the difference in effect between the two compounds, analysis of the frontier orbital was performed using ab initio 6-31G* wave function. The calculated chemical hardness (eta) for curcumin was clearly smaller, whereas its electronegativity (chi) and electrophilicity (omega) were clearly greater than the corresponding values for the curcumin-related compounds tetrahydrocurcumin, isoeugenol and eugenol. This suggested that the anti-inflammatory activities of curcumin may be related to eta-, chi- and/or omega-controlled enzymes. In addition, the bond dissociation enthalpy (BDE) of the phenolic OH was calculated using the density function theory (DFT)/B3LY. The total BDE values of curcumin and tetrahydrocurcumin were almost identical, but the BDE of one-electron oxidation and ionization potential (IP) for curcumin were lower than those for tetrahydrocurcumin, suggesting the highly pro-oxidative activity of curcumin. Curcumin has both oxidant and antioxidant properties. A causal link between the anti-inflammatory activities and molecular properties of phenolic antioxidants is suggested.


Asunto(s)
Antiinflamatorios/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Animales , Línea Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2 , Enlace de Hidrógeno , Hidróxidos/química , Lipopolisacáridos/farmacología , Ratones , Fenol/química , Porphyromonas gingivalis/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasa de Factor Nuclear kappa B
19.
PLoS One ; 13(8): e0202791, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30153274

RESUMEN

Porphyromonas gingivalis possesses various abilities to evade and disrupt host immune responses, by which it acts as an important periodontal pathogen. P. gingivalis produces outer membrane protein A (OmpA)-like proteins (OmpALPs), Pgm6 and Pgm7, as major O-linked glycoproteins, but their pathological roles in P. gingivalis infection are largely unknown. Here, we report that OmpALP-deficient strains of P. gingivalis show an enhanced stimulatory activity in coculture with host cells. Such an altered ability of the OmpALP-deficient strains was found to be due to their impaired survival in coculture and the release of LPS from dead bacterial cells to stimulate Toll-like receptor 4 (TLR4). Further analyses revealed that the OmpALP-deficient strains were inviable in serum-containing media although they grew normally in the bacterial medium. The wild-type strain was able to grow in 90% normal human serum, while the OmpALP-deficient strains did not survive even at 5%. The OmpALP-deficient strains did not survive in heat-inactivated serum, but they gained the ability to survive and grow in proteinase K-treated serum. Of note, the sensitivity of the OmpALP-deficient strains to the bactericidal activity of human ß-defensin 3 was increased as compared with the WT. Thus, this study suggests that OmpALPs Pgm6 and Pgm7 are important for serum resistance of P. gingivalis. These proteins prevent bacterial cell destruction by serum and innate immune recognition by TLR4; this way, P. gingivalis may adeptly colonize serum-containing gingival crevicular fluids and subgingival environments.


Asunto(s)
Porphyromonas gingivalis/metabolismo , Suero/química , Receptor Toll-Like 4/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo/química , Encía/citología , Encía/metabolismo , Humanos , Inmunidad Innata , Lipopolisacáridos/análisis , Lipopolisacáridos/inmunología , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , beta-Defensinas/farmacología
20.
Gen Dent ; 55(1): 64-9; quiz 70, 79-80, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17333971

RESUMEN

This study investigated the effect of in vivo low-dose acetylsalicylic acid (ASA, aspirin) on human platelet aggregation induced in vitro by Porphyromonas gingivalis cells. Blood was collected from volunteers (n = 20), half of whom ingested 81 mg of aspirin 24 hours before donating blood. Low-dose aspirin inhibited P. gingivalis cell-induced platelet aggregation and produced an inverse correlation of inhibition to number of cells. At the higher concentration of cells used in this in vitro assay, aspirin inhibition was significant (P = 0.001); however, partial platelet activation was observed. The significance of partial platelet activation is discussed in this article, as is the relevance of platelet aggregation to the putative link between inflammatory periodontal disease and cardiovascular disease.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Porphyromonas gingivalis/citología , Adenosina Difosfato/farmacología , Ácido Araquidónico/farmacología , Plaquetas/efectos de los fármacos , Recuento de Colonia Microbiana , Humanos , Técnicas In Vitro , Pruebas de Función Plaquetaria/métodos , Plasma Rico en Plaquetas/efectos de los fármacos , Porphyromonas gingivalis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA