Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(17): 6746-6755, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632675

RESUMEN

Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.


Asunto(s)
Excipientes , Espectroscopía de Resonancia Magnética , Tensoactivos , Tensoactivos/química , Excipientes/química , Excipientes/análisis , Espectroscopía de Resonancia Magnética/métodos , Polisorbatos/química , Poloxámero/química , Productos Biológicos/química , Productos Biológicos/análisis
2.
Mol Pharm ; 21(7): 3084-3102, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38828798

RESUMEN

Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.


Asunto(s)
Lípidos , Nanopartículas , Nanopartículas/química , Humanos , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Portadores de Fármacos/química , Animales , Productos Biológicos/administración & dosificación , Productos Biológicos/química , Liposomas
3.
Pharm Res ; 41(7): 1455-1473, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955997

RESUMEN

PURPOSE: Polysorbates are among the most used surfactants in biopharmaceutical products containing proteins. Our work aims to develop a high-throughput fluorometric assay to further diversify the analytical toolbox for quantification of PSs. METHOD: The assay leverages the micelle activated fluorescence signal from N-Phenyl-1-Naphthylamine (NPN). The development and optimization of assay parameters were guided by the pre-defined analytical target profile. Furthermore, NMR was used to probe the interaction between protein, PS80 and NPN in the measurement system and understand protein interference. RESULTS: All assay parameters including excitation and emission wavelengths, standard curve, NPN concentration, and incubation time have been optimized and adapted to a microplate format, making it compatible with automated solutions that will be pursued in the near future to drive consistency and efficiency in our workflows. The specificity, accuracy, and precision of the assay have been demonstrated through a case study. Furthermore, NMR results provided additional insight into the change of the interaction dynamics between PS80 and NPN as the protein concentration increases. The results indicate minimal interaction between the protein and PS80 at lower concentration. However, when the concentration exceeds 75 mg/mL, there is a significant interaction between the protein and PS-80 micelle and monomer. CONCLUSION: A high-throughput fluorometric assay has been developed for quantification of polysorbates in biopharmaceutical samples including in-process samples, drug substance and drug product. The assay reported herein could serve as a powerful analytical tool for polysorbate quantification and control, complementing the widely used liquid chromatography with charged aerosol detection method.


Asunto(s)
Colorantes Fluorescentes , Fluorometría , Ensayos Analíticos de Alto Rendimiento , Micelas , Polisorbatos , Polisorbatos/química , Polisorbatos/análisis , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento/métodos , Fluorometría/métodos , Tensoactivos/química , Tensoactivos/análisis , 1-Naftilamina/análogos & derivados , 1-Naftilamina/química , Productos Biológicos/análisis , Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos
4.
Bioorg Chem ; 147: 107389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677011

RESUMEN

The leaves of Odontonema strictum, a tropical plant used for its antihypertensive properties, are rich in nutrients and biologically active phytochemicals, such as ß-sitosterol, stigmasterol, umuravumbolide, deacetylumuravumbolide, dideacetylboronolide, deacetylboronolide, verbascoside, and isoverbascoside. In addition, its roots are rich in ß-sitosterol, stigmasterol, and the iridoid glycoside ß-O-methyl-unedoside. Ingestion of the roots was reported to have a sedative effect in a dog was previously reported on a dog eating the roots of this plant. In the present study, we report for the first time the cell proliferation- and neurite outgrowth-promoting effects in PC12 neuronal cells of the isolated organic compounds and crude extracts from O. strictum. Pituitary adenylate cyclase-activating peptide (PACAP) and quercetin were used as positive controls. At the concentration of 0.2 µg/mL, ß-sitosterol was more potent than quercetin and displayed the same activity (>45 µm/cell) as PACAP (100 nM). At a low concentration (0.04 µg/mL), verbascoside and isoverbascoside showed the strongest neurite outgrowth-promoting effect (neurite length of 30 to 35 µm/cell). Our results indicate that phytomedicines made from O. strictum may be useful in preventing neurodegenerative diseases.


Asunto(s)
Productos Biológicos , Proliferación Celular , Proyección Neuronal , Animales , Células PC12 , Proyección Neuronal/efectos de los fármacos , Ratas , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Neuronas/efectos de los fármacos , Neuronas/citología , Hojas de la Planta/química
5.
Appl Microbiol Biotechnol ; 108(1): 351, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819646

RESUMEN

The design, development, and obtaining of nanostructured materials, such as polymeric nanoparticles, have garnered interest due to loading therapeutic agents and its broad applicability. Polymeric nanoparticle synthesis employs advanced techniques such as the double emulsion approach and the pH-driven method, allowing the efficient incorporation of active compounds into these matrices. These loading methods ensure compound stability within the polymeric structure and enable control of the release of therapeutic agents. The ability of loaded polymeric nanoparticles to transport and release therapeutic agents on target manner represents a significant advancement in the quest for effective therapeutic solutions. Amid escalating concerns regarding antimicrobial resistance, interventions using polymeric nanostructures stand out for the possibility of carrying antimicrobial agents and enhancing antibacterial action against antibiotic-resistant bacteria, making a new therapeutic approach or complement to conventional treatments. In this sense, the capability of these polymeric nanoparticles to act against Escherichia coli underscores their relevance in controlling bacterial infections. This mini-review provides a comprehensive synthesis of promising techniques for loading therapeutic agents into polymeric nanoparticles highlighting methodologies and their implications, addressing prospects of combating bacterial infections caused by E. coli. KEY POINTS: • The double emulsion method provides control over size and release of bioactives. • The pH-driven method improves the solubility, stability, and release of active. • The methods increase the antibacterial action of those encapsulated in PNPs.


Asunto(s)
Antibacterianos , Emulsiones , Infecciones por Escherichia coli , Escherichia coli , Nanopartículas , Polímeros , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Emulsiones/química , Polímeros/química , Polímeros/farmacología , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Productos Biológicos/química , Productos Biológicos/farmacología
6.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468675

RESUMEN

Hydrogel biomaterials derived from natural biopolymers (e.g., fibrin, collagen, decellularized extracellular matrix) are regularly utilized in three-dimensional (3D) cell culture and tissue engineering. In contrast to those based on synthetic polymers, natural materials permit enhanced cytocompatibility, matrix remodeling, and biological integration. Despite these advantages, natural protein-based gels have lagged behind synthetic alternatives in their tunability; methods to selectively modulate the biochemical properties of these networks in a user-defined and heterogeneous fashion that can drive encapsulated cell function have not yet been established. Here, we report a generalizable strategy utilizing a photomediated oxime ligation to covalently decorate naturally derived hydrogels with bioactive proteins including growth factors. This bioorthogonal photofunctionalization is readily amenable to mask-based and laser-scanning lithographic patterning, enabling full four-dimensional (4D) control over protein immobilization within virtually any natural protein-based biomaterial. Such versatility affords exciting opportunities to probe and direct advanced cell fates inaccessible using purely synthetic approaches in response to anisotropic environmental signaling.


Asunto(s)
Productos Biológicos/química , Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Proteínas/química , Productos Biológicos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula , Humanos , Hidrogeles/farmacología , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Polímeros/química , Ingeniería de Tejidos/métodos
7.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33906945

RESUMEN

Anaerobic fungi (class Neocallimastigomycetes) thrive as low-abundance members of the herbivore digestive tract. The genomes of anaerobic gut fungi are poorly characterized and have not been extensively mined for the biosynthetic enzymes of natural products such as antibiotics. Here, we investigate the potential of anaerobic gut fungi to synthesize natural products that could regulate membership within the gut microbiome. Complementary 'omics' approaches were combined to catalog the natural products of anaerobic gut fungi from four different representative species: Anaeromyces robustus (Arobustus), Caecomyces churrovis (Cchurrovis), Neocallimastix californiae (Ncaliforniae), and Piromyces finnis (Pfinnis). In total, 146 genes were identified that encode biosynthetic enzymes for diverse types of natural products, including nonribosomal peptide synthetases and polyketide synthases. In addition, N. californiae and C. churrovis genomes encoded seven putative bacteriocins, a class of antimicrobial peptides typically produced by bacteria. During standard laboratory growth on plant biomass or soluble substrates, 26% of total core biosynthetic genes in all four strains were transcribed. Across all four fungal strains, 30% of total biosynthetic gene products were detected via proteomics when grown on cellobiose. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of fungal supernatants detected 72 likely natural products from A. robustus alone. A compound produced by all four strains of anaerobic fungi was putatively identified as the polyketide-related styrylpyrone baumin. Molecular networking quantified similarities between tandem mass spectrometry (MS/MS) spectra among these fungi, enabling three groups of natural products to be identified that are unique to anaerobic fungi. Overall, these results support the finding that anaerobic gut fungi synthesize natural products, which could be harnessed as a source of antimicrobials, therapeutics, and other bioactive compounds.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Hongos/química , Proteómica , Anaerobiosis/genética , Productos Biológicos/química , Biomasa , Cromatografía Liquida , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Microbioma Gastrointestinal/genética , Lignina/química , Lignina/genética , Neocallimastigales/química , Neocallimastigales/genética , Neocallimastix/química , Neocallimastix/genética , Piromyces/química , Piromyces/genética , Espectrometría de Masas en Tándem
8.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791220

RESUMEN

This review article addresses the antioxidant properties of different natural products, including ascorbic acid, gallic acid, oxalic acid, L-glutathione (GSH), bacteriorhodopsin, green tea polyphenols, glucose, hydroxycinnamic acid, ethanoic acid, betanin, and L-glutathione, in the reduction of graphene oxide (rGO). rGO can cause damage to cells, including oxidative stress and inflammation, limiting its application in different sectors that use graphene, such as technologies used in medicine and dentistry. The natural substances reviewed have properties that help reduce this damage, neutralizing free radicals and maintaining cellular integrity. This survey demonstrates that the combination of these antioxidant compounds can be an effective strategy to minimize the harmful effects of rGO and promote cellular health.


Asunto(s)
Antioxidantes , Productos Biológicos , Grafito , Oxidación-Reducción , Grafito/química , Antioxidantes/farmacología , Antioxidantes/química , Productos Biológicos/farmacología , Productos Biológicos/química , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Polifenoles/química , Polifenoles/farmacología
9.
Molecules ; 29(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338330

RESUMEN

With the COVID-19 pandemic behind us, the U.S. Food and Drug Administration (FDA) has approved 55 new drugs in 2023, a figure consistent with the number authorized in the last five years (53 per year on average). Thus, 2023 marks the second-best yearly FDA harvest after 2018 (59 approvals) in all the series. Monoclonal antibodies (mAbs) continue to be the class of drugs with the most approvals, with an exceptional 12, a number that makes it the most outstanding year for this class. As in 2022, five proteins/enzymes have been approved in 2023. However, no antibody-drug conjugates (ADCs) have been released onto the market. With respect to TIDES (peptides and oligonucleotides), 2023 has proved a spectacular year, with a total of nine approvals, corresponding to five peptides and four oligonucleotides. Natural products continue to be the best source of inspiration for drug development, with 10 new products on the market. Three drugs in this year's harvest are pegylated, which may indicate the return of pegylation as a method to increase the half-lives of drugs after the withdrawal of peginesatide from the market in 2013. Following the trends in recent years, two bispecific drugs have been authorized in 2023. As in the preceding years, fluorine and/or N-aromatic heterocycles are present in most of the drugs. Herein, the 55 new drugs approved by the FDA in 2023 are analyzed exclusively on the basis of their chemical structure. They are classified as the following: biologics (antibodies, proteins/enzymes); TIDES (peptide and oligonucleotides); combined drugs; pegylated drugs; natural products; nitrogen aromatic heterocycles; fluorine-containing molecules; and other small molecules.


Asunto(s)
Productos Biológicos , Aprobación de Drogas , Estados Unidos , Humanos , Flúor , Pandemias , Preparaciones Farmacéuticas/química , Industria Farmacéutica , Péptidos/uso terapéutico , Anticuerpos Monoclonales , Productos Biológicos/uso terapéutico , Productos Biológicos/química , United States Food and Drug Administration , Oligonucleótidos/uso terapéutico , Polietilenglicoles
10.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998994

RESUMEN

Periodontal diseases, chronic inflammatory conditions affecting oral health, are primarily driven by microbial plaque biofilm and the body's inflammatory response, leading to tissue damage and potential tooth loss. These diseases have significant physical, psychological, social, and economic impacts, necessitating effective management strategies that include early diagnosis, comprehensive treatment, and innovative therapeutic approaches. Recent advancements in biomanufacturing have facilitated the development of natural bioactive compounds, such as polyphenols, terpenoids, alkaloids, saponins, and peptides, which exhibit antimicrobial, anti-inflammatory, and tissue regenerative properties. This review explores the biomanufacturing processes-microbial fermentation, plant cell cultures, and enzymatic synthesis-and their roles in producing these bioactive compounds for managing periodontal diseases. The integration of these natural compounds into periodontal therapy offers promising alternatives to traditional treatments, potentially overcoming issues like antibiotic resistance and the disruption of the natural microbiota, thereby improving patient outcomes.


Asunto(s)
Productos Biológicos , Enfermedades Periodontales , Humanos , Enfermedades Periodontales/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/química , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Polifenoles/uso terapéutico , Polifenoles/farmacología , Polifenoles/química , Antiinfecciosos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/química , Biopelículas/efectos de los fármacos , Animales
11.
AAPS PharmSciTech ; 25(5): 102, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714592

RESUMEN

Freezing of biological drug substance (DS) is a critical unit operation that may impact product quality, potentially leading to protein aggregation and sub-visible particle formation. Cryo-concentration has been identified as a critical parameter to impact protein stability during freezing and should therefore be minimized. The macroscopic cryo-concentration, in the following only referred to as cryo-concentration, is majorly influenced by the freezing rate, which is in turn impacted by product independent process parameters such as the DS container, its size and fill level, and the freezing equipment. (At-scale) process characterization studies are crucial to understand and optimize freezing processes. However, evaluating cryo-concentration requires sampling of the frozen bulk, which is typically performed by cutting the ice block into pieces for subsequent analysis. Also, the large amount of product requirement for these studies is a major limitation. In this study, we report the development of a simple methodology for experimental characterization of frozen DS in bottles at relevant scale using a surrogate solution. The novel ice core sampling technique identifies the axial ice core in the center to be indicative for cryo-concentration, which was measured by osmolality, and concentrations of histidine and polysorbate 80 (PS80), whereas osmolality revealed to be a sensitive read-out. Finally, we exemplify the suitability of the method to study cryo-concentration in DS bottles by comparing cryo-concentrations from different freezing protocols (-80°C vs -40°C). Prolonged stress times during freezing correlated to a higher extent of cryo-concentration quantified by osmolality in the axial center of a 2 L DS bottle.


Asunto(s)
Embalaje de Medicamentos , Congelación , Hielo , Embalaje de Medicamentos/métodos , Concentración Osmolar , Polisorbatos/química , Histidina/química , Productos Biológicos/química
12.
Nucleic Acids Res ; 49(D1): D1179-D1185, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33137173

RESUMEN

The US Food and Drug Administration (FDA) and the National Center for Advancing Translational Sciences (NCATS) have collaborated to publish rigorous scientific descriptions of substances relevant to regulated products. The FDA has adopted the global ISO 11238 data standard for the identification of substances in medicinal products and has populated a database to organize the agency's regulatory submissions and marketed products data. NCATS has worked with FDA to develop the Global Substance Registration System (GSRS) and produce a non-proprietary version of the database for public benefit. In 2019, more than half of all new drugs in clinical development were proteins, nucleic acid therapeutics, polymer products, structurally diverse natural products or cellular therapies. While multiple databases of small molecule chemical structures are available, this resource is unique in its application of regulatory standards for the identification of medicinal substances and its robust support for other substances in addition to small molecules. This public, manually curated dataset provides unique ingredient identifiers (UNIIs) and detailed descriptions for over 100 000 substances that are particularly relevant to medicine and translational research. The dataset can be accessed and queried at https://gsrs.ncats.nih.gov/app/substances.


Asunto(s)
Bases de Datos de Compuestos Químicos , Bases de Datos Factuales , Bases de Datos Farmacéuticas , Salud Pública/legislación & jurisprudencia , Productos Biológicos/química , Productos Biológicos/clasificación , Conjuntos de Datos como Asunto , Drogas en Investigación/química , Drogas en Investigación/clasificación , Humanos , Internet , Ácidos Nucleicos/química , Ácidos Nucleicos/clasificación , Polímeros/química , Polímeros/clasificación , Medicamentos bajo Prescripción/química , Medicamentos bajo Prescripción/clasificación , Proteínas/química , Proteínas/clasificación , Salud Pública/métodos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/clasificación , Programas Informáticos , Estados Unidos , United States Food and Drug Administration , Xenobióticos/química , Xenobióticos/clasificación
13.
Mar Drugs ; 20(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355012

RESUMEN

Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.


Asunto(s)
Productos Biológicos , Neoplasias Pancreáticas , Humanos , Materiales Biocompatibles/uso terapéutico , Hongos/química , Organismos Acuáticos/química , Bacterias/química , Neoplasias Pancreáticas/tratamiento farmacológico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/química
14.
J Med Virol ; 93(6): 3532-3538, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33230830

RESUMEN

The infection of enterovirus 71 (EV71) resulted in hand, foot, and mouth disease and may lead to severe nervous system damage and even fatalities. There are no effective drugs to treat the EV71 virus and it is crucial to find novel drugs against it. Polysaccharide isolated from Durvillaea antarctica green algae has an antiviral effect. In this study, D. antarctica polysaccharide (DAPP) inhibited the infection of EV71 was demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), reverse transcription polymerase chain reaction, flow cytometry, and western blot. MTT assay showed that DAPP had no toxicity on Vero cells at the concentration 250 µg/ml. Furthermore, DAPP significantly reduced the RNA level of EV71 in a dose-dependent manner. Moreover, DAPP inhibited the Vero cells apoptosis induced by EV71 via the P53 signaling pathway. Meanwhile, the expression of signal transducer and activator of transcription 1 and mammalian target of rapamycin were increased and the proinflammatory cytokines were significantly inhibited by DAPP. Taken together, these results suggested that DAPP could be a potential pharmaceutical against the infection of EV71 virus.


Asunto(s)
Antivirales/farmacología , Apoptosis/efectos de los fármacos , Chlorophyta/química , Enterovirus Humano A/efectos de los fármacos , Genes p53/genética , Polisacáridos/farmacología , Factor de Transcripción STAT1/genética , Transducción de Señal/efectos de los fármacos , Animales , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Chlorocebus aethiops , Enterovirus Humano A/genética , Polisacáridos/química , Polisacáridos/aislamiento & purificación , ARN Viral/análisis , Células Vero
15.
Pharm Res ; 38(9): 1563-1583, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34495486

RESUMEN

PURPOSE: To evaluate a modified high purity polysorbate 20 (RO HP PS20)-with lower levels of stearate, palmitate and myristate esters than the non-modified HP PS20-as a surfactant in biopharmaceutical drug products (DP). RO HP PS20 was designed to provide functional equivalence as a surfactant while delaying the onset of free fatty acid (FFA) particle formation upon hydrolytic degradation relative to HP PS20. METHODS: Analytical characterization of RO HP PS20 raw material included fatty acid ester (FAE) distribution, higher order ester (HOE) fraction, FFA levels and trace metals. Functional assessments included 1) vial and intravenous bag agitation; 2) oxidation via a placebo and methionine surrogate study; and 3) hydrolytic PS20 degradation studies to evaluate FFA particle formation with and without metal nucleation. RESULTS: Interfacial protection and oxidation propensity were comparable between the two polysorbates. Upon hydrolytic degradation, FFA particle onset was delayed in RO HP PS20. The delay was more pronounced when HOEs of PS20 were preferentially degraded. Furthermore, the hydrolytic degradants of RO HP PS20 formed fewer particles in the presence of spiked aluminum. CONCLUSION: This work highlights the criticality of having tighter control on long chain FAE levels of PS20 to reduce the occurrence of FFA particle formation upon hydrolytic degradation and lower the variability in its onset. By simultaneously meeting compendial PS20 specifications while narrowing the allowable range for each FAE and shifting its composition towards the shorter carbon chain species, RO HP PS20 provides a promising alternative to HP PS20 for biopharmaceutical DPs.


Asunto(s)
Ácidos Grasos no Esterificados/química , Polisorbatos/química , Productos Biológicos/química , Química Farmacéutica/métodos , Ésteres/química , Hidrólisis , Oxidación-Reducción , Tensoactivos/química
16.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 96-100, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34817362

RESUMEN

The skin is the largest organ in the human body, and due to its barrier function, it is susceptible to multiple injuries. The appearance of infections during the wound healing process is a complication that represents a formidable hospital challenge. The presence of opportunistic bacteria with sophisticated resistance mechanisms is difficult to eradicate and compromises patients' lives. Therefore, the search for new efficacious treatments from natural sources that prevent and counteract infections, in addition to promoting the healing process, has increased in recent years. In this respect, films with the capability to protect wounds and release drugs are the presentation that predominates commercially in the hospital environment. Those films can offer several mechanical advantages such as physical protection to prevent opportunistic bacteria's entry, regulation of gas exchange, and capture of exudate through a swelling process. Wound dressings are generally curative materials easily adaptable to different anatomical regions, with high strength and elasticity, and some are even bioabsorbable. Additionally, the components of the films can actively participate in promoting the healing process. Even more, the film can be made up of carriers with other active participants to prevent and eradicate infections. Therefore, the extensive versatility, practicality, and usefulness of films from natural sources to address infectious processes during wound healing are relevant and recurrent themes. This work presents an analysis of the state-of-the-art of films with natural products focused on preventing and eradicating infections in wound healing.


Asunto(s)
Productos Biológicos/farmacología , Infecciones Oportunistas/prevención & control , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/prevención & control , Heridas y Lesiones/prevención & control , Productos Biológicos/química , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Membranas Artificiales , Infecciones Oportunistas/microbiología , Plastificantes/química , Plastificantes/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Infección de Heridas/microbiología , Heridas y Lesiones/microbiología
17.
Mar Drugs ; 19(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668842

RESUMEN

Sponges are prolific sources of various natural products that have provided the chemical scaffolds for new drugs. The sponges of the genus Petrosia inhabit various regions and contain a variety of biologically active natural products such as polyacetylenes, sterols, meroterpenoids, and alkaloids. This review aims to provide a comprehensive summary of the chemical structures and biological activities of Petrosia metabolites covering a period of more than four decades (between 1978 and 2020). It is also described in this review that the major groups of metabolites from members of the genus Petrosia differed with latitude. The polyacetylenes were identified to be the most predominant metabolites in Petrosia sponges in temperate regions, while tropical Petrosia species were sources of a greater variety of metabolites, such as meroterpenoids, sterols, polyacetylenes, and alkaloids.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Petrosia/metabolismo , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Productos Biológicos/química , Humanos , Polímero Poliacetilénico/química , Polímero Poliacetilénico/aislamiento & purificación , Polímero Poliacetilénico/farmacología , Metabolismo Secundario , Esteroles/química , Esteroles/aislamiento & purificación , Esteroles/farmacología , Terpenos/química , Terpenos/aislamiento & purificación , Terpenos/farmacología
18.
Proc Natl Acad Sci U S A ; 115(2): E134-E143, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279405

RESUMEN

The morphology of surfactant monolayers is typically studied on the planar surface of a Langmuir trough, even though most physiological interfaces are curved at the micrometer scale. Here, we show that, as the radius of a clinical lung surfactant monolayer-covered bubble decreases to ∼100 µm, the monolayer morphology changes from dispersed circular liquid-condensed (LC) domains in a continuous liquid-expanded (LE) matrix to a continuous LC linear mesh separating discontinuous LE domains. The curvature-associated morphological transition cannot be readily explained by current liquid crystal theories based on isotropic domains. It is likely due to the anisotropic bending energy of the LC phase of the saturated phospholipids that are common to all natural and clinical lung surfactants. This continuous LC linear mesh morphology is also present on bilayer vesicles in solution. Surfactant adsorption and the dilatational modulus are also strongly influenced by the changes in morphology induced by interfacial curvature. The changes in morphology and dynamics may have physiological consequences for lung stability and function as the morphological transition occurs at alveolar dimensions.


Asunto(s)
Pulmón/química , Membranas Artificiales , Surfactantes Pulmonares/química , Agua/química , Adsorción , Algoritmos , Animales , Anisotropía , Productos Biológicos/química , Fenómenos Biofísicos , Humanos , Microscopía Confocal , Fosfolípidos/química , Propiedades de Superficie
19.
J Mater Sci Mater Med ; 32(8): 89, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34331594

RESUMEN

Microneedles (MNs) are minimally invasive tridimensional biomedical devices that bypass the skin barrier resulting in systemic and localized pharmacological effects. Historically, biomaterials such as carbohydrates, due to their physicochemical properties, have been used widely to fabricate MNs. Owing to their broad spectrum of functional groups, carbohydrates permit designing and engineering with tunable properties and functionalities. This has led the carbohydrate-based microarrays possessing the great potential to take a futuristic step in detecting, drug delivery, and retorting to biologicals. In this review, the crucial and extensive summary of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose, and starch has been discussed systematically, using PRISMA guidelines. It also discusses different approaches for drug delivery and the mechanical properties of biomaterial-based MNs, till date, progress has been achieved in clinical translation of carbohydrate-based MNs, and regulatory requirements for their commercialization. In conclusion, it describes a brief perspective on the future prospects of carbohydrate-based MNs referred to as the new class of topical drug delivery systems.


Asunto(s)
Carbohidratos/química , Dermatología/tendencias , Sistemas de Liberación de Medicamentos , Agujas , Administración Cutánea , Animales , Materiales Biocompatibles/química , Productos Biológicos/química , Celulosa/química , Quitina/química , Quitosano/química , Sulfatos de Condroitina/química , Humanos , Ácido Hialurónico/química , Ensayo de Materiales , Ratones , Análisis por Micromatrices , Piel/efectos de los fármacos , Porcinos
20.
Chem Soc Rev ; 49(3): 983-1031, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31960001

RESUMEN

Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.


Asunto(s)
Materiales Biomiméticos/química , Biopolímeros/química , Nanoestructuras/química , Animales , Productos Biológicos/química , Membranas Artificiales , Estructura Molecular , Óptica y Fotónica , Procesos Fotoquímicos , Proteínas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA