Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(9): 102295, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872015

RESUMEN

The chromatin-associated high mobility group protein N2 (HMGN2) cofactor regulates transcription factor activity through both chromatin and protein interactions. Hmgn2 expression is known to be developmentally regulated, but the post-transcriptional mechanisms that regulate Hmgn2 expression and its precise roles in tooth development remain unclear. Here, we demonstrate that HMGN2 inhibits the activity of multiple transcription factors as a general mechanism to regulate early development. Bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays show that HMGN2 interacts with the transcription factor Lef-1 through its HMG-box domain as well as with other early development transcription factors, Dlx2, FoxJ1, and Pitx2. Furthermore, EMSAs demonstrate that HMGN2 binding to Lef-1 inhibits its DNA-binding activity. We found that Pitx2 and Hmgn2 associate with H4K5ac and H3K4me2 chromatin marks in the proximal Dlx2 promoter, demonstrating Hmgn2 association with open chromatin. In addition, we demonstrate that microRNAs (miRs) mir-23a and miR-23b directly target Hmgn2, promoting transcriptional activation at several gene promoters, including the amelogenin promoter. In vivo, we found that decreased Hmgn2 expression correlates with increased miR-23 expression in craniofacial tissues as the murine embryo develops. Finally, we show that ablation of Hmgn2 in mice results in increased amelogenin expression because of increased Pitx2, Dlx2, Lef-1, and FoxJ1 transcriptional activity. Taken together, our results demonstrate both post-transcriptional regulation of Hmgn2 by miR-23a/b and post-translational regulation of gene expression by Hmgn2-transcription factor interactions. We conclude that HMGN2 regulates tooth development through its interaction with multiple transcription factors.


Asunto(s)
Amelogénesis , Regulación de la Expresión Génica , Proteína HMGN2 , Proteínas de Homeodominio , Factor de Unión 1 al Potenciador Linfoide , Factores de Transcripción , Transcripción Genética , Amelogénesis/genética , Amelogenina/genética , Animales , Cromatina/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
2.
Hum Mol Genet ; 23(1): 194-208, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23975681

RESUMEN

Patients with Axenfeld-Rieger Syndrome (ARS) present various dental abnormalities, including hypodontia, and enamel hypoplasia. ARS is genetically associated with mutations in the PITX2 gene, which encodes one of the earliest transcription factors to initiate tooth development. Thus, Pitx2 has long been considered as an upstream regulator of the transcriptional hierarchy in early tooth development. However, because Pitx2 is also a major regulator of later stages of tooth development, especially during amelogenesis, it is unclear how mutant forms cause ARS dental anomalies. In this report, we outline the transcriptional mechanism that is defective in ARS. We demonstrate that during normal tooth development Pitx2 activates Amelogenin (Amel) expression, whose product is required for enamel formation, and that this regulation is perturbed by missense PITX2 mutations found in ARS patients. We further show that Pitx2-mediated Amel activation is controlled by chromatin-associated factor Hmgn2, and that Hmgn2 prevents Pitx2 from efficiently binding to and activating the Amel promoter. Consistent with a physiological significance to this interaction, we show that K14-Hmgn2 transgenic mice display a severe loss of Amel expression on the labial side of the lower incisors, as well as enamel hypoplasia-consistent with the human ARS phenotype. Collectively, these findings define transcriptional mechanisms involved in normal tooth development and shed light on the molecular underpinnings of the enamel defect observed in ARS patients who carry PITX2 mutations. Moreover, our findings validate the etiology of the enamel defect in a novel mouse model of ARS.


Asunto(s)
Amelogenina/metabolismo , Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/patología , Proteína HMGN2/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Incisivo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Amelogenina/genética , Animales , Segmento Anterior del Ojo/patología , Línea Celular , Esmalte Dental/metabolismo , Esmalte Dental/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo , Regulación de la Expresión Génica , Proteína HMGN2/genética , Humanos , Incisivo/patología , Ratones , Ratones Noqueados , Mutación Missense , Regiones Promotoras Genéticas , Proteína del Homeodomínio PITX2
3.
J Dent Res ; 103(1): 51-61, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950483

RESUMEN

Dental enamel formation is coordinated by ameloblast differentiation, production of enamel matrix proteins, and crystal growth. The factors regulating ameloblast differentiation are not fully understood. Here we show that the high mobility group N (HMGN) nucleosomal binding proteins modulate the rate of ameloblast differentiation and enamel formation. We found that HMGN1 and HMGN2 proteins are downregulated during mouse ameloblast differentiation. Genetically altered mice lacking HMGN1 and HMGN2 proteins show faster ameloblast differentiation and a higher rate of enamel deposition in mice molars and incisors. In vitro differentiation of induced pluripotent stem cells to dental epithelium cells showed that HMGN proteins modulate the expression and chromatin accessibility of ameloblast-specific genes and affect the binding of transcription factors epiprofin and PITX2 to ameloblast-specific genes. Our results suggest that HMGN proteins regulate ameloblast differentiation and enamel mineralization by modulating lineage-specific chromatin accessibility and transcription factor binding to ameloblast regulatory sites.


Asunto(s)
Proteínas del Esmalte Dental , Proteína HMGN1 , Proteína HMGN2 , Animales , Ratones , Ameloblastos/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Epigénesis Genética , Diferenciación Celular/genética , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Factores de Transcripción/metabolismo , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Cromatina/metabolismo , Amelogenina/metabolismo
4.
Int J Cancer ; 97(5): 567-73, 2002 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-11807779

RESUMEN

Butyrate, a short chain fatty acid (SCFA), is generated by anaerobic fermentation of undigested carbohydrates within the colon. Butyrate enhances acetylation of core histones, a process directly linked to the formation of active chromatin and gene expression. However, additional chromatin components also contribute to the formation of transcriptionally active chromatin. The high mobility group protein N2 (HMG-N2), a nonhistone protein, is involved in chromatin structure modulation. We examined the effects of butyrate on HMG-N2 expression, hyperacetylation and chromatin binding. HT29 human adenocarcinoma cells were incubated with butyrate. Levels of HMG-N2 mRNA and of total or acetylated HMG-N2 protein were analyzed. Protein dynamics were investigated with transfected cells expressing HMG-N2-EGFP fusion proteins. Treatment of HT29 cells with butyrate led to significant hyperacetylation of HMG-N2. Levels of HMG-N2 protein remained unchanged. Northern blot analysis revealed a significant reduction in HMG-N2 mRNA levels after treatment with butyrate. Analysis of HMG-N2-EGFP transfected HT29 cells demonstrated that butyrate treatment changes the binding properties of HMG-N2-EGFP to chromatin. In addition, butyrate treatment resulted in solubilization of endogenous acetylated HMG-N2 into the supernatant of permeabilized cells. We demonstrate that butyrate treatment is associated with hyperacetylation of HMG-N2 protein in HT29 cells. The modulation of this nonhistone chromatin protein resulted in altered binding properties to chromatin. This may represent an additional step in changing chromatin structure and composition with subsequent consequences for transcription and gene expression. Modulation of nonhistone chromatin proteins, like the ubiquitous HMG-N2 proteins, may be partly responsible for the wide range of butyrate-associated effects.


Asunto(s)
Butiratos/farmacología , Cromatina/metabolismo , Proteína HMGN2/metabolismo , Células HT29/efectos de los fármacos , Células HT29/metabolismo , Acetilación/efectos de los fármacos , Northern Blotting , Western Blotting , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Genes Reporteros , Proteína HMGN2/genética , Células HT29/citología , Humanos , Octoxinol/farmacología , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA