Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Toxicol ; 39(2): 1018-1030, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064261

RESUMEN

In recent years, microplastics (MPs) have gained significant attention as a persistent environmental pollutant resulting from the decomposition of plastics, leading to their accumulation in the human body. The liver, particularly of individuals with type 2 diabetes mellitus (T2DM), is known to be more susceptible to the adverse effects of environmental pollutants. Therefore, to investigate the potential impact of MPs on the liver of diabetic mice and elucidate the underlying toxicological mechanisms, we exposed db/db mice to 0.5 µm MPs for 3 months. Our results revealed that MPs exposure resulted in several harmful effects, including decreased body weight, disruption of liver structure and function, elevated blood glucose levels, impaired glucose tolerance, and increased glycogen accumulation in the hepatic tissue of the mice. Furthermore, MPs exposure was found to promote hepatic gluconeogenesis by perturbing the PP2A/AMPK/HNF4A signaling pathway. In addition, MPs disrupt redox balance, leading to oxidative damage in the liver. This exposure also disrupted hepatic lipid metabolism, stimulating lipid synthesis while inhibiting catabolism, ultimately resulting in the development of fatty liver. Moreover, MPs were found to induce liver fibrosis by activating the Wnt/ß-catenin signaling pathway. Furthermore, MPs influenced adaptive thermogenesis in brown fat by modulating the expression of uncoupling protein 1 (UCP1) and genes associated with mitochondrial oxidative respiration thermogenesis in brown fat. In conclusion, our study demonstrates that MPs induce oxidative damage in the liver, disturb glucose and lipid metabolism, promote hepatic fibrosis, and influence adaptive thermogenesis in brown fat in diabetic mice. These findings underscore the potential adverse effects of MPs on liver health in individuals with T2DM and highlight the importance of further research in this area.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Humanos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Microplásticos , Plásticos/metabolismo , Plásticos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Vía de Señalización Wnt , Diabetes Mellitus Experimental/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Fibrosis , Hígado , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo
2.
Apoptosis ; 28(7-8): 1012-1023, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37014579

RESUMEN

Epithelial disruption is the initiation of most infectious disease. Regulation of epithelium apoptosis may play a key role in balance the survival competition between resident bacteria and host cells. The role of the mTOR/p70S6K pathway in preventing apoptosis of human gingival epithelial cells (hGECs) infected with Porphyromonas gingivalis (Pg) was investigated in order to further understand the survival strategy of the epithelial cells in during Pg infecting. hGECs was challenged with Pg for 4, 12, and 24 h. Additionally, hGECs was pretreated with LY294002 (PI3K signaling inhibitor) or Compound C (AMPK inhibitor) for 12 h and exposed them to Pg for 24 h. Subsequently, apoptosis was detected using flow cytometry, and expression and activity of Bcl-2, Bad, Bax, PI3K, AKT, AMPK, mTOR, and p70S6K proteins were analyzed using western blotting. Pg-infecting did not increase apoptosis of hGECs; but the expression ratio of Bad to Bcl-2 was increased after infecting. In contrast, BadSer136 phosphorylation was promoted, accompanied by a significant reduction of mTOR/p70S6K and PI3K/AKT signaling, along with the upregulation of AMPKThr172 signaling. Morrover, the PI3K inhibitor LY294002 promoted Pg-mediated reduction of mTOR/p70S6K expression, and the increase of AMPK signaling and BadSer136 phosphorylation rate, eventually decreasing apoptosis. While Compound C inhibited Pg-mediated activation of AMPK and downregulation of mTOR/p70S6K signaling, significantly reduced the BadSer136 phosphorylation rate, thereby increasing apoptosis. Thus, hGECs prevent apoptosis via an inherent cellular-homeostasis, pro-survival mechanism during Pg infection, the AMPK/mTOR/p70S6K pathway helps prevent apoptosis in hGECs infected with Pg by regulating BadSer136 phosphorylation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Proto-Oncogénicas c-akt , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Porphyromonas gingivalis/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Epiteliales/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3
3.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993864

RESUMEN

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Asunto(s)
Melatonina , Neuroblastoma , Humanos , Ratones , Animales , Mitofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Poliestirenos/metabolismo , Microplásticos , Neuronas Dopaminérgicas/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Simulación del Acoplamiento Molecular , Plásticos , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología
4.
J Nanobiotechnology ; 21(1): 458, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031158

RESUMEN

BACKGROUND: Microglial activation in the spinal trigeminal nucleus (STN) plays a crucial role in the development of trigeminal neuralgia (TN). The involvement of adenosine monophosphate-activated protein kinase (AMPK) and N-methyl-D-aspartate receptor 1 (NMDAR1, NR1) in TN has been established. Initial evidence suggests that stem cells from human exfoliated deciduous teeth (SHED) have a potential therapeutic effect in attenuating TN. In this study, we propose that SHED-derived exosomes (SHED-Exos) may alleviate TN by inhibiting microglial activation. This study sought to assess the curative effect of SHED-Exos administrated through the tail vein on a unilateral infraorbital nerve chronic constriction injury (CCI-ION) model in mice to reveal the role of SHED-Exos in TN and further clarify the potential mechanism. RESULTS: Animals subjected to CCI-ION were administered SHED-Exos extracted by differential ultracentrifugation. SHED-Exos significantly alleviated TN in CCI mice (increasing the mechanical threshold and reducing p-NR1) and suppressed microglial activation (indicated by the levels of TNF-α, IL-1ß and IBA-1, as well as p-AMPK) in vivo and in vitro. Notably, SHED-Exos worked in a concentration dependent manner. Mechanistically, miR-24-3p-upregulated SHED-Exos exerted a more significant effect, while miR-24-3p-inhibited SHED-Exos had a weakened effect. Bioinformatics analysis and luciferase reporter assays were utilized for target gene prediction and verification between miR-24-3p and IL1R1. Moreover, miR-24-3p targeted the IL1R1/p-p38 MAPK pathway in microglia was increased in CCI mice, and participated in microglial activation in the STN. CONCLUSIONS: miR-24-3p-encapsulated SHED-Exos attenuated TN by suppressing microglial activation in the STN of CCI mice. Mechanistically, miR-24-3p blocked p-p38 MAPK signaling by targeting IL1R1. Theoretically, targeted delivery of miR-24-3p may offer a potential strategy for TN.


Asunto(s)
Exosomas , MicroARNs , Neuralgia del Trigémino , Ratones , Humanos , Animales , Neuralgia del Trigémino/metabolismo , Exosomas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
5.
Tohoku J Exp Med ; 261(4): 257-265, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37344419

RESUMEN

Improving hepatic glucose and lipid metabolisms is an important strategy to treat type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease (T2DM-NAFLD). Silybin (SLB) has the potential hepatoprotection, while its oral bioavailability is poor. This study aims to investigate the functional role and mechanism of liposomal SLB in modulating glucose/lipid metabolism in T2DM-NAFLD. SLB was prepared by thin film dispersion method and characterized using dynamic light scattering, scanning electron microscope, high performance liquid chromatography and zeta potential analyzer. A rat model of T2DM-NAFLD was used to determine the role of liposomal SLB in regulating glycolipid metabolism and hepatic damage. Rat primary hepatocytes were used to demonstrate the hepatoprotection mechanism of liposomal SLB. The encapsulation efficiency was more than 80%, which showed the average particle size of 119.76 nm. Also, the average Zeta potential was -4.76 mV. These liposomes were spherical. In rats with T2DM-NAFLD, liposomal SLB alleviated insulin resistance and lipid metabolism, thereby improving hepatic lipid accumulation, inflammation and fibrosis. Besides, liposomal SLB elevated AMPK phosphorylation, and decreased collagen I/III, α-smooth muscle actin (α-SMA), transforming growth factor-ß1 (TGF-ß1) and the phosphorylation of Smad2/3. In hepatocyte model, compound C partially reversed the effects of liposomal SLB on cell viability, glycolipid metabolism and AMPK/TGF-ß1/Smad pathway activation. Liposomal SLB ameliorates hepatic glucose and lipid metabolisms in T2DM-NAFLD via activating AMPK/TGF-ß1/Smad pathway, providing an efficient strategy for treating T2DM-NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/metabolismo , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Silibina/farmacología , Silibina/uso terapéutico , Silibina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/metabolismo , Liposomas/metabolismo , Liposomas/farmacología , Modelos Animales de Enfermedad , Hígado/metabolismo , Lípidos/farmacología , Glucolípidos/metabolismo , Glucolípidos/farmacología
6.
Ecotoxicol Environ Saf ; 255: 114772, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924562

RESUMEN

Chronic fluoride exposure can cause developmental neurotoxicity, however the precise mechanisms remain unclear. To explore the mechanism of mitophagy in fluoride-induced developmental neurotoxicity, specifically focusing on PRKAA1 in regulating the PINK1/Parkin pathway, we established a Sprage Dawley rat model with continuous sodium fluoride (NaF) exposure and an NaF-treated SH-SY5Y cell model. We found that NaF exposure increased the levels of LC3-Ⅱ and p62, impaired autophagic degradation, and subsequently blocked autophagic flux. Additionally, NaF exposure increased the expression of PINK1, Parkin, TOMM-20, and Cyt C and cleaved PARP in vivo and in vitro, indicating NaF promotes mitophagy and neuronal apoptosis. Meanwhile, phosphoproteomics and western blot analysis showed that NaF treatment enhanced PRKAA1 phosphorylation. Remarkably, the application of both 3-methyladenosine (3-MA; autophagy inhibitor) and dorsomorphin (DM; AMPK inhibitor) suppressed NaF-induced neuronal apoptosis by restoring aberrant mitophagy. In addition, 3-MA attenuated an increase in p62 protein levels and NaF-induced autophagic degradation. Collectively, our findings indicated that NaF causes aberrant mitophagy via PRKAA1 in a PINK1/Parkin-dependent manner, which triggers neuronal apoptosis. Thus, regulating PRKAA1-activated PINK1/Parkin-dependent mitophagy may be a potential treatment for NaF-induced developmental neurotoxicity.


Asunto(s)
Neuroblastoma , Síndromes de Neurotoxicidad , Ratas , Humanos , Animales , Mitofagia/fisiología , Fluoruros/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Fluoruro de Sodio/toxicidad , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo
7.
Ecotoxicol Environ Saf ; 245: 114105, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36155338

RESUMEN

Microplastics (MPs) pollution becomes an increasing concern and researchers keep exploring the health effects caused by MPs exposure. The ageing process in the environment significantly alters the physicochemical characteristics of MPs and subsequently affects their toxicities. The health effects of aged MPs exposure and the mechanism underlying are worthy of exploration. Polystyrene microplastics (PS-MPs) (with size less than 50 µm) were obtained by grinding and screening polystyrene materials. PS-MPs continued to be aged by ozone treatment (0.4 mg/min, 9 h). Both male and female C57BL/6 mice were orally exposed to 0 or 2 mg/kg/d aged PS-MPs for 28 days. Results showed that PS-MPs were found in liver, ovary and spleen of females and liver, testis and spleen of males in the aged PS-MPs group. Exposure to aged PS-MPs significantly decreased abdominal fat/body coefficient, the adipocyte size and the serum LDL-C level in females. Compared to the control, serum estradiol (E2) level, the mRNA expression levels of genes regulating E2 production (17ß-hsd, 3ß-hsd and Star) in ovary and the protein expression levels of E2 receptors (ERα, ERß), AMPKα and p-AMPKα1 in liver increased significantly, and the mRNA expression levels of AMP-activated protein kinase (AMPK) downstream genes (Srebp-1c, Fas and Scd1) in liver decreased significantly in the female aged PS-MPs group. Liver metabolomic profiling showed that differential metabolites between female aged PS-MPs group and female control group were enriched in biotin metabolism and the level of biotin increased significantly in the female aged PS-MPs group. However, no significant changes were detected in males. These results indicated that aged PS-MPs exposure increased ovarian E2 production and activated the AMPK pathway in the liver which might inhibit liver lipid synthesis only in females. Our findings provide new insights into the potential sex-specific health effects of environmental MPs pollution.


Asunto(s)
Microplásticos , Ozono , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Biotina , LDL-Colesterol/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microplásticos/toxicidad , Ozono/metabolismo , Plásticos/metabolismo , Poliestirenos/metabolismo , Poliestirenos/toxicidad , ARN Mensajero/metabolismo , Factores Sexuales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
8.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233071

RESUMEN

Rutin, also called quercetin-3-rhamnosyl glucoside, is a natural flavonol glycoside present in many plants. Rutin is used to treat various diseases, such as inflammation, diabetes, and cancer. For polymeric biomaterials, triethylene glycol dimethacrylate (TEGDMA) is the most commonly used monomer and serves as a restorative resin, a dentin bonding agent and sealant, and a bone cement component. Overall, TEGDMA induces various toxic effects in macrophages, including cytotoxicity, apoptosis, and genotoxicity. The aim of this study was to investigate the protective mechanism of rutin in alleviating TEGDMA-induced toxicity in RAW264.7 macrophages. After treatment with rutin, we assessed the cell viability and apoptosis of TEGDMA-induced RAW264.7 macrophages using an methylthiazol tetrazolium (MTT) assay and Annexin V-FITC/propidium iodide assay, respectively. Subsequently, we assessed the level of genotoxicity using comet and micronucleus assays, assessed the cysteinyla aspartate specific proteinases (caspases) and antioxidant enzyme (AOE) activity using commercial kits, and evaluated the generation of reactive oxygen species (ROS) using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay. We evaluated the expression of heme oxygenase (HO)-1, the expression of nuclear factor erythroid 2 related factor (Nrf-2), and phosphorylation of AMP activated protein kinase (AMPK) using the Western blot assay. The results indicated that rutin substantially reduced the level of cytotoxicity, apoptosis, and genotoxicity of TEGDMA-induced RAW264.7 macrophages. Rutin also blocked the activity of caspase-3, caspase-8, and caspase-9 in TEGDMA-stimulated RAW264.7 macrophages. In addition, it decreased TEGDMA-induced ROS generation and AOE deactivation in macrophages. Finally, we found that TEGDMA-inhibited slightly the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation would be revered by rutin. In addition, the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation was enhanced by rutin. These findings indicate that rutin suppresses TEGDMA-induced caspase-mediated toxic effects through ROS generation and antioxidative system deactivation through the Nrf-2/AMPK pathway. Therefore, rutin has the potential to serve as a novel antitoxicity agent for TEGDMA in RAW264.7 macrophages.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Rutina , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Apoptosis , Ácido Aspártico , Materiales Biocompatibles/farmacología , Cementos para Huesos/farmacología , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Caspasas/metabolismo , Recubrimientos Dentinarios , Glucósidos/farmacología , Glicósidos/farmacología , Macrófagos/metabolismo , Polietilenglicoles , Ácidos Polimetacrílicos , Propidio , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Rutina/farmacología
9.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142831

RESUMEN

The purpose of this study was to investigate the anti-fatigue effect of natural Lycium barbarum polysaccharide (LBP) during exercise, develop a functional anti-fatigue effervescent tablet by applying LBP to practical products, and help patients who have difficulty swallowing conventional tablets or capsules. LBP was extracted with water, and DEAE-52 cellulose was used for purification. The chemical structure and monosaccharide composition of LBP by Fourier transform infrared spectroscopy (FI-IR) and ion chromatography (IC). Lycium barbarum polysaccharide effervescent tablets (LBPT) were prepared by mixing LBP and an excipient. Animal experiments showed that LBP and LBPT significantly increased the exhaustive swimming time in rats. LBP and LBPT improved biochemical markers in rat serum, such as lactic acid and creatine kinase, enhanced the antioxidant capacity of rat muscle, and reversed the decrease in serum glucose, ATP and glycogen content caused by exercise. Transmission electron microscopy showed that LBP and LBPT increased the density of mitochondria in rat liver. In addition, molecular experiments showed that LBP and LBPT could improve oxidative stress caused by exercise by regulating the Nrf2/HO-1 signaling pathway and regulating energy metabolism via the AMPK/PGC-1α signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Lycium , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/farmacología , Celulosa/metabolismo , Creatina Quinasa/metabolismo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Metabolismo Energético , Excipientes/farmacología , Glucosa/metabolismo , Glucógeno/metabolismo , Ácido Láctico/farmacología , Lycium/metabolismo , Monosacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas , Comprimidos/farmacología , Agua/farmacología
10.
J Cell Mol Med ; 25(1): 333-344, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33314684

RESUMEN

Simvastatin (SMV) could increase tooth anchorage during orthodontic tooth movement (OTM). However, previous studies on its bone-specific anabolic and anti-inflammation properties were based on static in vitro and in vivo conditions. AMPK is a stress-activated kinase that protects tissue against serious damage from overloading inflammation. Rat periodontal ligament cells (PDLCs) were subjected to a serial of SMV concentrations to investigate the optimization that promoted osteogenic differentiation. The PDLCs in static and/or tensile culturing conditions then received the proper concentration SMV. Related factors expression was measured by the protein array, real-time PCR and Western blot. The 0.05UM SMV triggered osteogenic differentiation of PDLCs. The inhibition of AMPK activation through a pharmacological approach (Compound C) caused dramatic decrease in osteogenic/angiogenic gene expression and significant increase in inflammatory NF-κB phosphorylation. In contrast, pharmacological activation of AMPK by AICAR significantly inhibited inflammatory factors expression and activated ERK1/2, P38 MAPK phosphorylation. Moreover, AMPK activation induced by SMV delivery significantly attenuated the osteoclastogenesis and decreased the expression of pro-inflammatory TNF-α and NF-κB in a rodent model of OTM. The current studies suggested that SMV could intrigue intrinsic activation of AMPK in PDLCs that promote attenuate the inflammation which occurred under tensile irritation through AMPK/MAPK/NF-kB Inhibition.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , FN-kappa B/metabolismo , Simvastatina/uso terapéutico , Proteínas Quinasas Activadas por AMP/genética , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Humanos , FN-kappa B/genética , Osteogénesis/genética , Osteogénesis/fisiología , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Estrés Mecánico , Microtomografía por Rayos X
11.
J Cell Mol Med ; 24(9): 5097-5108, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32293113

RESUMEN

Non-alcohol fatty liver disease (NAFLD) is a common disease which causes serious liver damage. Geniposide (GEN), a kind of iridoid glycoside extracted from Gardenia jasminoides fruit, has many biological effects, such as resistance to cell damage and anti-neurodegenerative disorder. Lipid accumulation was obvious in tyloxapol-induced liver and oil acid (OA) with palmitic acid (PA)-induced HepG2 cells compared with the control groups while GEN improved the increasing conditions. GEN significantly lessened the total cholesterol (TC), the triglyceride (TG), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), myeloperoxidase (MPO), reactive oxygen species (ROS) and increased high-density lipoprotein (HDL), superoxide dismutase (SOD) to response the oxidative stress via activating nuclear factor erythroid-2-related factor 2 (Nrf2), haeme oxygenase (HO)-1 and peroxisome proliferator-activated receptor (PPAR)α which may influence the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway in mice and cells. Additionally, GEN evidently decreased the contents of sterol regulatory element-binding proteins (SREBP)-1c, phosphorylation (P)-mechanistic target of rapamycin complex (mTORC), P-S6K, P-S6 and high mobility group protein (HMGB) 1 via inhibiting the expression of phosphoinositide 3-kinase (PI3K), and these were totally abrogated in Nrf2-/- mice. Our study firstly proved the protective effect of GEN on lipid accumulation via enhancing the ability of antioxidative stress and anti-inflammation which were mostly depend on up-regulating the protein expression of Nrf2/HO-1 and AMPK signalling pathways, thereby suppressed the phosphorylation of mTORC and its related protein.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Iridoides/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células Hep G2 , Humanos , Inflamación , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Ácido Palmítico/química , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Polietilenglicoles , Transducción de Señal
12.
Biochem Biophys Res Commun ; 533(1): 181-187, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32958248

RESUMEN

In recent years, the obese and overweight population has increased rapidly, which has become a worldwide public health problem. However, effective medication is lacking. Our previous study identified a novel peptide, PDBSN (GLSVADLAESIMKNL), that could significantly restrict adipocyte differentiation in vitro, but its in vivo function has not been determined. Thus, in this study, we encapsulated the peptide into liposomes attached with two ligands (visceral-adipose-tissue-targeting peptide and cell-penetrating peptide) to improve stability and specificity. We then tested the peptide's function in HFD (high-fat diet)-induced obese mice and found that PDBSN could reduce weight gain and improve insulin resistance as well as lipid homeostasis. These results suggest that PDBSN may be a potential candidate for anti-obesity drug discovery.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , L-Lactato Deshidrogenasa/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Fragmentos de Péptidos/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Fármacos Antiobesidad/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Activación Enzimática/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , L-Lactato Deshidrogenasa/administración & dosificación , Liposomas , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Fragmentos de Péptidos/administración & dosificación
13.
J Cell Physiol ; 234(4): 4005-4014, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30256390

RESUMEN

Cementum, which shares common features with bone in terms of biochemical composition, is important for the homeostasis of periodontium during periodontitis and orthodontic treatment. Sirtuin 6 (SIRT6), as a member of the sirtuin family, plays key roles in the osteogenic differentiation of bone marrow mesenchymal stem cells. However, the involvement of SIRT6 in cementoblast differentiation and mineralization and the underlying mechanisms remain unknown. In this study, we observed that the expression of SIRT6 increased during cementoblast differentiation initially. Analysis of the gain- and loss-of-function indicated that overexpressing SIRT6 in OCCM-30 cells suppresses cementoblast differentiation and mineralization and downregulating SIRT6 promotes cementogenesis. GLUT1, a glucose transporter necessary in cementogenesis, was inhibited by SIRT6. Overexpressing GLUT1 in SIRT6-overexpressed OCCM-30 cells rescued the inhibitory effect of SIRT6 on cementoblast differentiation and mineralization. Moreover, AMPK was activated after overexpressing SIRT6 and inhibited cementoblast differentiation and mineralization. Downregulating the expression of SIRT6 inhibited AMPK activity. Meanwhile, GLUT1 overexpression significantly decreased AMPK activity. Overall, on one hand, SIRT6 inhibited cementoblast differentiation and mineralization by suppressing GLUT1. On the other hand, SIRT6 inhibited cementoblast differentiation and mineralization by activating the AMPK pathway. GLUT1 overexpression also rescued the increased AMPK pathway activated by SIRT6.


Asunto(s)
Cementogénesis , Cemento Dental/enzimología , Transportador de Glucosa de Tipo 1/metabolismo , Sirtuinas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diferenciación Celular , Línea Celular , Cemento Dental/citología , Transportador de Glucosa de Tipo 1/genética , Ratones , Transducción de Señal , Sirtuinas/genética , Regulación hacia Arriba
14.
Int J Mol Sci ; 20(3)2019 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-30691106

RESUMEN

Pollution-induced skin damage results in oxidative stress; cellular toxicity; inflammation; and, ultimately, premature skin aging. Previous studies suggest that the activation of autophagy can protect oxidation-induced cellular damage and aging-like changes in skin. In order to develop new anti-pollution ingredients, this study screened various kinds of natural extracts to measure their autophagy activation efficacy in cultured dermal fibroblast. The stimulation of autophagy flux by the selected extracts was further confirmed both by the expression of proteins associated with the autophagy signals and by electron microscope. Crepidiastrum denticulatum (CD) extract treated cells showed the highest autophagic vacuole formation in the non-cytotoxic range. The phosphorylation of adenosine monophosphate kinase (AMPK), but not the inhibition of mammalian target of rapamycin (mTOR), was observed by CD-extract treatment. Its anti-pollution effects were further evaluated with model compounds, benzo[a]pyrene (BaP) and cadmium chloride (CdCl2), and a CD extract treatment resulted in both the protection of cytotoxicity and a reduction of proinflammatory cytokines. These results suggest that the autophagy activators can be a new protection regimen for anti-pollution. Therefore, CD extract can be used for anti-inflammatory and anti-pollution cosmetic ingredients.


Asunto(s)
Asteraceae/química , Contaminantes Ambientales/efectos adversos , Células Epidérmicas/citología , Extractos Vegetales/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Benzopirenos/efectos adversos , Cloruro de Cadmio/efectos adversos , Células Cultivadas , Citocinas/metabolismo , Células Epidérmicas/efectos de los fármacos , Células Epidérmicas/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Microscopía Electrónica de Transmisión , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Extractos Vegetales/química , Serina-Treonina Quinasas TOR/metabolismo
15.
Molecules ; 23(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213073

RESUMEN

Porphyromonas endodontalis (P. endodontalis) lipopolysaccharide (LPS) is associated with the progression of bone resorption in periodontal and periapical diseases. Matrix metalloproteinase-2 (MMP-2) expression and activity are elevated in apical periodontitis and have been suggested to participate in bone resorption. Therefore, inhibiting MMP-2 activation may be considered a therapeutic strategy for treating apical periodontitis. Resveratrol is a natural non-flavonoid polyphenol that has been reported to have antioxidant, anti-cancer, and anti-inflammatory properties. However, the capacity of resveratrol to protect osteoblast cells from P. endodontalis LPS insults and the mechanism of its inhibitory effects on MMP-2 activation is poorly understood. Here, we demonstrate that cell viability is unchanged when 10 mg L-1P. endodontalis LPS is used, and MMP-2 expression is drastically induced by P. endodontalis LPS in a concentration- and time-dependent manner. Twenty micromolar resveratrol did not reduce MC3T3-E1 cell viability. Resveratrol increased AMP-activated protein kinase (AMPK) phosphorylation, and Compound C, a specific AMPK inhibitor, partially abolished the resveratrol-mediated phosphorylation of AMPK. In addition, AMPK inhibition blocked the effects of resveratrol on MMP-2 expression and activity in LPS-induced MC3T3-E1 cells. Treatment with resveratrol also induced suppressor of cytokine signaling 1 (SOCS1) expression in MC3T3-E1 cells. SOCS1 siRNA negated the inhibitory effects of resveratrol on LPS-induced MMP-2 production. Additionally, resveratrol-induced SOCS1 upregulation was reduced by treatment with compound C. These results demonstrate that AMPK and SOCS1 activation are important signaling events during resveratrol-mediated inhibition of MMP-2 production in response to LPS in MC3T3-E1 cells, and there is crosstalk between AMPK and SOCS1 signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Lipopolisacáridos/efectos adversos , Metaloproteinasa 2 de la Matriz/metabolismo , Osteoblastos/citología , Porphyromonas endodontalis/metabolismo , Resveratrol/farmacología , Proteínas Quinasas Activadas por AMP/genética , Animales , Proteínas Bacterianas/efectos adversos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/genética , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Factores de Tiempo
16.
Int Endod J ; 50(3): 260-270, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26865394

RESUMEN

AIM: To investigate the role of nitric oxide (NO)-induced autophagy in human dental pulp cells (HDPCs) and the involvement of AMP-activated protein kinase (AMPK) pathway. METHODOLOGY: The MTT assay was used to determine the cytotoxic effect of the NO donor sodium nitroprusside (SNP) in HDPCs. Apoptosis was detected by means of the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and apoptosis- or autophagy-related signal molecules were observed by Western blot analysis. Acidic autophagolysosomal vacuoles were stained with acridine orange to detect autophagy in the presence of 3-methyladenine (3MA) used to inhibit autophagy. To explore the mechanism underlying autophagy and its protective role against apoptosis, compound C, the chemical AMPK inhibitor, was used. Statistical analysis was performed using Student's t-test or analysis of variance (anova) followed by the Student-Newman-Keuls test (P < 0.05). RESULTS: SNP decreased viability of the HDPCs in a dose- and time-dependent manner. Exposing the HDPCs to SNP increased the levels of p62 and LC3-II, the typical markers of autophagy, and increased the number of acidic autophagolysosomal vacuoles, indicating the appearance of autophagy as detected by acridine orange staining (P < 0.05). Pre-treatment with 3MA decreased cell viability but increased cleaved poly(ADP-ribose) polymerase (PARP) and caspase-3, apoptosis indicators, in the SNP-treated HDPCs (P < 0.05). SNP activated AMPK/ULK signalling, whilst the inhibition of AMPK by compound C enhanced apoptotic cell death induced by SNP in the HDPCs (P < 0.05). CONCLUSION: NO induced autophagy with AMPK activation, which plays a role in the survival of HDPCs against NO-induced apoptosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Pulpa Dental/metabolismo , Óxido Nítrico/farmacología , Autofagia/fisiología , Células Cultivadas , Pulpa Dental/citología , Humanos , Serina-Treonina Quinasas TOR/metabolismo
17.
Int J Implant Dent ; 10(1): 2, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286943

RESUMEN

PURPOSE: The acquisition of osseointegration during implant therapy is slower and poorer in patients with diabetes compared with healthy persons. The serum concentration of adiponectin in patients with type II diabetes is lower than that of healthy persons via the suppression of AMP-activated protein kinase (AMPK). Therefore, we hypothesized that the AMPK activation enhances bone formation around implants, resulting in the improved acquisition of osseointegration. The purpose of this study was to evaluate the impact of AMPK activation on osteoblast differentiation and its mechanism of downstream signaling on titanium disc (Ti). METHODS: Confluent mouse pre-osteoblasts (MC3T3-E1) cells (1 × 105 cells/well) were cultured with BMP-2 for osteoblast differentiation, in the presence or absence AICAR, an AMPK activator. We examined the effects of AMPK activation on osteoblast differentiation and the underlying mechanism on a Ti using a CCK8 assay, a luciferase assay, quantitative RT-PCR, and western blotting. RESULTS: Although the proliferation rate of osteoblasts was not different between a Ti and a tissue culture polystyrene dish, the addition of AICAR, AMPK activator slightly enhanced osteoblast proliferation on the Ti. AICAR enhanced the BMP-2-dependent transcriptional activity on the Ti, leading to upregulation in the expression of osteogenesis-associated molecules. AICAR simultaneously upregulated the expression of autophagy-associated molecules on the Ti, especially LC3-II. AdipoRon, an adiponectin receptor type1/type2 activator activated AMPK, and upregulated osteogenesis-associated molecules on Ti. CONCLUSIONS: AMPK activation enhances osteoblast differentiation on a Ti via autophagy, suggesting that it promotes the acquisition of osseointegration during implant therapy.


Asunto(s)
Implantes Dentales , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Osteogénesis/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Titanio/farmacología , Titanio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Osteoblastos/metabolismo , Autofagia
18.
J Photochem Photobiol B ; 251: 112845, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244301

RESUMEN

OBJECTIVE: Photobiomodulation is extensively employed in the management of chronic inflammatory diseases such as periodontitis because of its anti-inflammatory and antioxidant effects. This study used low-level Nd:YAG laser to investigate the mechanism of photobiomodulation as well as the role of adenosine monophosphate-activated protein kinase (AMPK) and Sirtuins (SIRT) 3 in it, providing new clues for the treatment of periodontitis. METHODS: Human gingival fibroblasts (HGFs) were extracted from gingiva and stimulated with LPS. The suitable parameters of Nd:YAG laser were chosen for subsequent experiments by detecting cell viability. We assessed the level of inflammation and oxidative stress as well as AMPK and SIRT3. The mechanism for AMPK targeting SIRT3 modulating the anti-inflammatory and antioxidant effects of photobiomodulation was explored by the AMPK inhibitor (Compound C) test, cell transfection, western blot, and immunofluorescence. RESULTS: HGFs were isolated and identified, followed by the identification of optimal Nd:YAG laser parameters (60 mJ, 15 Hz, 10s) for subsequent experimentation. With this laser, inflammatory factors (IL-6, TNF-α, COX2, and iNOS) decreased as well as the phosphorylation and nuclear translocation of NFκB-P65. SOD2 was up-regulated but reactive oxygen species (ROS) was down-regulated. The laser treatment exhibited enhancements in AMPK phosphorylation and SIRT3 expression. The above effects could all be reversed by Compound C. Silencing AMPK or SIRT3 by siRNA, the down-regulation of COX2, iNOS, and ROS by laser was inhibited. SIRT3 was down-regulated when the AMPK was silenced. CONCLUSION: Low-level Nd:YAG laser activated AMPK-SIRT3 signaling pathway, facilitating the anti-inflammatory and antioxidative activity.


Asunto(s)
Láseres de Estado Sólido , Periodontitis , Sirtuina 3 , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Especies Reactivas de Oxígeno/farmacología , Antioxidantes/metabolismo , Encía , Ciclooxigenasa 2/metabolismo , Estrés Oxidativo , Inflamación , Antiinflamatorios/farmacología , Fibroblastos/metabolismo
19.
J Pharmacol Sci ; 123(4): 328-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24257438

RESUMEN

It is reported that liver hydrolysate (LH) enhances liver function. However, the effects of LH on physical fatigue are unknown. The aim of this study was to investigate the effect of LH on alterations in locomotor activity and energy metabolism such as 5'-AMP-activated protein kinase (AMPK), glycogen content, and blood lactic acid, after forced walking. Adult male ddY mice were used. Locomotor activity, AMPK phosphorylation, and glycogen content in the liver and soleus muscle, as well as blood lactic acid were determined following LH treatment before and/or after forced walking. The locomotor activity significantly decreased after forced walking for 3 h. Two administrations of LH (30 or 100 mg/kg) significantly increased the locomotor activity, while a single administration either before or after forced walking did not show any specific effect. Administering LH twice activated AMPK in the liver and soleus muscle. Glycogen levels significantly decreased in both the liver and soleus muscle after forced walking, whereas the blood lactate level significantly increased. In contrast, administering LH twice increased muscle glycogen and decreased blood lactic acid. These findings indicate that LH produced an anti-fatigue effect and that this effect appears to involve the efficient glycogen utilization through activation of AMPK.


Asunto(s)
Fatiga/tratamiento farmacológico , Extractos Hepáticos/farmacología , Hidrolisados de Proteína/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Fatiga/metabolismo , Fatiga/fisiopatología , Ácido Láctico/sangre , Hígado/metabolismo , Extractos Hepáticos/administración & dosificación , Extractos Hepáticos/uso terapéutico , Masculino , Metilmetacrilatos/metabolismo , Ratones , Ratones Endogámicos , Actividad Motora/efectos de los fármacos , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos , Hidrolisados de Proteína/administración & dosificación , Hidrolisados de Proteína/uso terapéutico
20.
Exp Gerontol ; 172: 112071, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36563529

RESUMEN

Dental Follicle Cells (DFCs) are somatic stem cells with a limited lifespan, but little is known about a possible mechanism of cellular senescence. Previous studies have shown that cellular senescence is associated with increased demand of glycolsis or the "glycolytic metabotype", which can be induced by activation of 5' adenosine monophosphate-activated protein kinase (AMPK), and decreased autophagy. This study examined the role of AMPK in inducing senescence in DFCs. During the induction of cellular senescence, AMPK activity was impaired, suggesting a negative impact on senescence induction. In line with this assumption, cellular senescence was induced upon inhibition of AMPK with a specific siRNA. In addition, after this inhibition, autophagy was also inhibited. Moreover, specific inhibition of autophagy promoted cellular senescence. However, inducers of AMPK such as metformin or AICAR surprisingly increased senescence in DFCs. Interestingly, autophagy was impaired after long-term induction of AMPK with AICAR and metformin. Moreover, activation of AMPK induces the consumption of glucose but decreases NAD/NADH ratio in DFCs that suggest not only "glycolytic metabotype" of DFCs but also Mitochondrial Dysfunction Associated Senescence (MiDAS). Both changes are highly associated with the induction of cellular senescence. Hence, both AMPK activation and inhibition promote the induction of cellular senecence of DFCs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metformina , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Saco Dental/metabolismo , Senescencia Celular , Metformina/farmacología , Fosforilación , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA