Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 511: 63-75, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621649

RESUMEN

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Asunto(s)
Quinasas DyrK , Proteínas de Xenopus , Xenopus laevis , Animales , Región Branquial/embriología , Región Branquial/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Cresta Neural/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Transducción de Señal , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética
2.
Genesis ; 62(4): e23614, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139086

RESUMEN

Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-ß) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-ß in the Mediterranean Sea urchin species, Paracentrotus lividus. TGF-ßRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in P. lividus. Continuous perturbation of TGF-ßRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-ßRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-ß targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-ß in biomineralization in these two phyla results from convergent evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Larva , Paracentrotus , Animales , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/genética , Paracentrotus/genética , Paracentrotus/metabolismo , Paracentrotus/embriología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Osteogénesis/genética , Redes Reguladoras de Genes , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Mol Pharmacol ; 105(4): 286-300, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38278554

RESUMEN

Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-ß signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-ß receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-ß pathway. PG blocked TGF-ß signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-ß receptors in the cytoplasm by impeding the recycling of type II TGF-ß receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-ß-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-ß pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-ß signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-ß strategies.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Factor de Crecimiento Transformador beta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Prodigiosina/farmacología , Prodigiosina/metabolismo , Polímeros/metabolismo , Pirroles , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Fosforilación , Células Epiteliales/metabolismo , Factor de Crecimiento Transformador beta1 , Proteína Smad2/metabolismo
4.
Plant J ; 113(4): 833-850, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36582174

RESUMEN

The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked ß-1,3/ß-1,4-glucans (MLGs; e.g. ß-1,4-D-(Glc)2 -ß-1,3-D-Glc, MLG43) and cellulose (e.g. ß-1,4-D-(Glc)3 , CEL3). The mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin oligosaccharides (e.g. ß-1,4-d-(GlcNAc)6 , CHI6), which involve several receptor kinase proteins (RKs) with LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by CHI6. igp1-igp4 are altered in three RKs - AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4) - with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECD-RKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant KD  = 1.19 ± 0.03 µm) and cellopentaose (KD  = 1.40 ± 0.01 µM), but not to MLG43, supporting its function as a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are components of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and downstream PTI activation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Leucina/metabolismo , Glucanos/metabolismo , Celulosa/metabolismo , Inmunidad de la Planta/genética , Plantas/metabolismo , Oligosacáridos/metabolismo
5.
Part Fibre Toxicol ; 21(1): 36, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261835

RESUMEN

Microplastics (MPs), a brand-new class of worldwide environmental pollutant, have received a lot of attention. MPs are consumed by both humans and animals through water, food chain and other ways, which may cause potential health risks. However, the effects of MPs on embryonic development, especially placental function, and its related mechanisms still need to be further studied. We investigated the impact on fetal development and placental physiological function of pregnant mice by consecutive gavages of MPs at 0, 25, 50, 100 mg/kg body weight during gestational days (GDs 0-14). The results showed that continuous exposure to high concentrations of MP significantly reduced daily weight gain and impaired reproductive performance of pregnant mice. In addition, MPs could significantly induce oxidative stress and placental dysfunction in pregnant mice. On the other hand, MPs exposure significantly decreased placental barrier function and induced placental inflammation. Specifically, MPs treatment significantly reduced the expression of tight junction proteins in placentas, accompanied by inflammatory cell infiltration and increased mRNA levels of pro-inflammatory cytokines and chemokines in placentas. Finally, we found that MPs induced placental apoptosis and endoplasmic reticulum (ER) stress through the GRP78/IRE1α/JNK axis, leading to placental dysfunction and decreased reproductive performance in pregnant mice. We revealed for the first time that the effects of MPs on placental dysfunction in pregnant animals. Blocking the targets of MPs mediated ER stress will provide potential therapeutic ideas for the toxic effects of MPs on maternal pregnancy.


Asunto(s)
Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Microplásticos , Placenta , Animales , Femenino , Embarazo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Placenta/efectos de los fármacos , Placenta/metabolismo , Microplásticos/toxicidad , Ratones , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Retardo del Crecimiento Fetal/inducido químicamente , Ratones Endogámicos ICR
6.
J Biol Chem ; 298(6): 102036, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35588785

RESUMEN

Serum- and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that plays important roles in the cellular stress response. While SGK1 has been reported to restrain inflammatory immune responses, the molecular mechanisms involved remain elusive, especially in oral bacteria-induced inflammatory milieu. Here, we found that SGK1 curtails Porphyromonas gingivalis-induced inflammatory responses through maintaining levels of tumor necrosis factor receptor-associated factor (TRAF) 3, thereby suppressing NF-κB signaling. Specifically, SGK1 inhibition significantly enhances production of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, IL-1ß, and IL-8 in P. gingivalis-stimulated innate immune cells. The results were confirmed with siRNA and LysM-Cre-mediated SGK1 KO mice. Moreover, SGK1 deletion robustly increased NF-κB activity and c-Jun expression but failed to alter the activation of mitogen-activated protein kinase signaling pathways. Further mechanistic data revealed that SGK1 deletion elevates TRAF2 phosphorylation, leading to TRAF3 degradation in a proteasome-dependent manner. Importantly, siRNA-mediated traf3 silencing or c-Jun overexpression mimics the effect of SGK1 inhibition on P. gingivalis-induced inflammatory cytokines and NF-κB activation. In addition, using a P. gingivalis infection-induced periodontal bone loss model, we found that SGK1 inhibition modulates TRAF3 and c-Jun expression, aggravates inflammatory responses in gingival tissues, and exacerbates alveolar bone loss. Altogether, we demonstrated for the first time that SGK1 acts as a rheostat to limit P. gingivalis-induced inflammatory immune responses and mapped out a novel SGK1-TRAF2/3-c-Jun-NF-κB signaling axis. These findings provide novel insights into the anti-inflammatory molecular mechanisms of SGK1 and suggest novel interventional targets to inflammatory diseases relevant beyond the oral cavity.


Asunto(s)
Pérdida de Hueso Alveolar , Proteínas Inmediatas-Precoces , Proteínas Serina-Treonina Quinasas , Factor 3 Asociado a Receptor de TNF , Pérdida de Hueso Alveolar/genética , Animales , Citocinas/metabolismo , Genes jun , Proteínas Inmediatas-Precoces/metabolismo , Inmunidad , Inflamación , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Porphyromonas gingivalis/patogenicidad , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo
7.
J Cell Physiol ; 238(1): 151-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370432

RESUMEN

Nanoplastics (NPs) pollution poses a huge threat to the ecosystem and has become one of the environmental pollutants that have attracted much attention. There is increasing evidence that both oxidative stress and endoplasmic reticulum stress (ERS) are associated with polystyrene nanoplastics (PS-NPs) exposure. Lipopolysaccharide (LPS) has been shown to induce apoptotic damage in various tissues, but whether PS-NPs can aggravate LPS-induced apoptosis in mouse kidneys through oxidative stress-regulated inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) ERS pathway remains unclear. In this study, based on the establishment of in vitro and in vivo PS-NPs and LPS exposure models alone and in combination in mice and HEK293 cells, the effects and mechanisms of PS-NPs on LPS-induced renal cell apoptosis were investigated. The results showed that PS-NPs could aggravate LPS-induced apoptosis. PS-NPs/LPS can induce ERS through oxidative stress, activate the IRE1/XBP1 pathway, and promote the expression of apoptosis markers (Caspase-3 and Caspase-12). Kidney oxidative stress, ERS, and apoptosis in PS-NPs + LPS combined exposure group were more severe than those in the single exposure group. Interestingly, 4-phenylbutyric acid-treated HEK293 cells inhibited the expression of the IRE1/XBP1 ERS pathway and apoptotic factors in the PS-NPs + LPS combined exposure group. N-acetyl-L-cysteine effectively blocked the activation of the IRE1/XBP1 ERS pathway, suggesting that PS-NPs-induced oxidative stress is an early event that triggers ERS. Collectively, these results confirmed that PS-NPs aggravated LPS-induced apoptosis through the oxidative stress-induced IRE1/XBP1 ERS pathway. Our study provides new insights into the health threats of PS-NPs exposed to mammals and humans.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Microplásticos , Poliestirenos , Proteínas Serina-Treonina Quinasas , Proteína 1 de Unión a la X-Box , Animales , Humanos , Ratones , Células HEK293 , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Microplásticos/toxicidad , Estrés Oxidativo , Poliestirenos/toxicidad , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
8.
Biochem Biophys Res Commun ; 663: 163-170, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37121126

RESUMEN

Plant elicitor peptides (Peps) are recognized by two receptor-like kinases, PEPR1 and PEPR2, and trigger plant immunity responses and root growth inhibition. In this study, we reveal that the Pep-PEPR system triggers root immunity responses in Arabidopsis. Pep1 incubation initiated callose and lignin deposition in roots of wild type but not in that of pepr1 pepr2 mutant seedlings. The plasma membrane-associated kinase BIK1, which serves downstream of the Pep-PEPR signaling pathway, was essential for Pep1-induced root immunity responses. Interestingly, disruption of PEPR1/2-associated coreceptor BAK1 enhanced the deposition of both callose and lignin induced by Pep1 in roots. Ethylene and salicylic acid signaling are involved in Pep1-induced root immunity responses. Furthermore, we showed that the successful phytopathogen, P. syringae (DC3000) could effectively suppress Pep1-trigged root callose and lignin accumulation. These results demonstrated the endogenous Pep-triggered root immunity responses and pathogenic suppression of the Pep-PEPR signaling pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Transducción de Señal/fisiología , Péptidos/farmacología , Péptidos/metabolismo , Inmunidad de la Planta , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Biochem Biophys Res Commun ; 682: 71-76, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37804589

RESUMEN

Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones with the α-crystalline domain that is critical to their chaperone activity. Within the sHSP family, three (HSPB1, HSPB3, and HSPB8) proteins are linked with inherited peripheral neuropathies, including distal hereditary motor neuropathy (dHMN) and Charco-Marie-Tooth disease (CMT). In this study, we introduced the HSPB3 Y118H (HSPB3Y118H) mutant gene identified from the CMT2 family in Drosophila. With a missense mutation on its α-crystalline domain, this human HSPB3 mutant gene induced a loss of motor activity accompanied by reduced mitochondrial membrane potential in fly neuronal tissues. Moreover, mitophagy, a critical mechanism of mitochondrial quality control, is downregulated in fly motor neurons expressing HSPB3Y118H. Surprisingly, PINK1 and Parkin, the core regulators of mitophagy, successfully rescued these motor and mitochondrial abnormalities in HSPB3 mutant flies. Results from the first animal model of HSPB3 mutations suggest that mitochondrial dysfunction plays a critical role in HSPB3-associated human pathology.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Drosophila , Proteínas de Choque Térmico Pequeñas , Animales , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Choque Térmico/genética , Mitocondrias/metabolismo , Mutación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética
10.
J Virol ; 96(12): e0031722, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35604142

RESUMEN

The RIG-I-like receptor signaling pathway is crucial for producing type I interferon (IFN-I) against RNA viruses. The present study observed that viral infection increased annexin-A1 (ANXA1) expression, and ANXA1 then promoted RNA virus-induced IFN-I production. Compared to ANXA1 wild-type cells, ANXA1-/- knockout cells showed IFN-ß production decreasing after viral stimulation. RNA virus stimulation induced ANXA1 to regulate IFN-ß production through the TBK1-IRF3 axis but not through the NF-κB axis. ANXA1 also interacted with JAK1 and STAT1 to increase signal transduction induced by IFN-ß or IFN-γ. We assessed the effect of ANXA1 on the replication of foot-and-mouth disease virus (FMDV) and found that ANXA1 inhibits FMDV replication dependent on IFN-I production. FMDV 3A plays critical roles in viral replication and host range. The results showed that FMDV 3A interacts with ANXA1 to inhibit its ability to promote IFN-ß production. We also demonstrated that FMDV 3A inhibits the formation of ANXA1-TBK1 complex. These results indicate that ANXA1 positively regulates RNA virus-stimulated IFN-ß production and FMDV 3A antagonizes ANXA1-promoted IFN-ß production to modulate viral replication. IMPORTANCE FMDV is a pathogen that causes one of the world's most destructive and highly contagious animal diseases. The FMDV 3A protein plays a critical role in viral replication and host range. Although 3A is one of the viral proteins that influences FMDV virulence, its underlying mechanisms remain unclear. ANXA1 is involved in immune activation against pathogens. The present study demonstrated that FMDV increases ANXA1 expression, while ANXA1 inhibits FMDV replication. The results also showed that ANXA1 promotes RNA virus-induced IFN-I production through the IRF3 axis at VISA and TBK1 levels. ANXA1 was also found to interact with JAK1 and STAT1 to strengthen signal transduction induced by IFN-ß and IFN-γ. 3A interacted with ANXA1 to inhibit ANXA1-TBK1 complex formation, thereby antagonizing the inhibitory effect of ANXA1 on FMDV replication. This study helps to elucidate the mechanism underlying the effect of the 3A protein on FMDV replication.


Asunto(s)
Anexina A1 , Virus de la Fiebre Aftosa , Replicación Viral , Animales , Anexina A1/metabolismo , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Virus de la Fiebre Aftosa/fisiología , Interacciones Huésped-Patógeno , Factor 3 Regulador del Interferón , Interferón beta/metabolismo , Interferón gamma , Janus Quinasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Transcripción STAT1/metabolismo
11.
Chemistry ; 29(35): e202300629, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37057571

RESUMEN

The development of low-cost and high-efficiency bifunctional catalysts is still a challenge for hydrogen production through overall water splitting. This paper reports the in-situ synthesis of C-doped MoS2 /CoP/MoO2 using bacterial cellulose (BC) as the reducing agent and the source of C and using BC (MoS2 /Co1.2 MoO4.2 ⋅ 1.2H2 O/BC) as the template. Heterogeneous structure for hydrogen evolution reaction (HER) and alkaline water electrolysis in a wide pH range. Due to the large number of defect sites caused by C doping and the synergy between these three active components (MoS2 , CoP and MoO2 ), the HER and oxygen evolution reaction (OER) activities of the catalyst have been greatly improved. Therefore, during HER, a small initial overpotential (27 mV) was achieved in 1.0 M KOH. In 0.5 M H2 SO4 , 0.1 M PBS and 1.0 M KOH, the current density reached 10 mA cm-2 at overpotentials of 123.4, 150, and 139 mV, respectively. For OER, an overpotential of 268 mV was required to achieve 10 mA cm-2 . The alkaline two-electrode device composed of C doped MoS2 /CoP/MoO2 delivers 10 mA cm-2 at a low potential of 1.51 V and can be easily driven by a single AA battery. This work provides a new design strategy of C doped ternary heterostructures for electrocatalysis and related energy applications.


Asunto(s)
Celulosa , Molibdeno , Hidrógeno , Oxígeno , Proteínas Serina-Treonina Quinasas , Agua , Concentración de Iones de Hidrógeno
12.
J Pathol ; 256(1): 119-133, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622442

RESUMEN

Ameloblastoma is an odontogenic neoplasm characterized by slow intraosseous growth with progressive jaw resorption. Recent reports have revealed that ameloblastoma harbours an oncogenic BRAFV600E mutation with mitogen-activated protein kinase (MAPK) pathway activation and described cases of ameloblastoma harbouring a BRAFV600E mutation in which patients were successfully treated with a BRAF inhibitor. Therefore, the MAPK pathway may be involved in the development of ameloblastoma; however, the precise mechanism by which it induces ameloblastoma is unclear. The expression of ADP-ribosylation factor (ARF)-like 4c (ARL4C), induced by a combination of the EGF-MAPK pathway and Wnt/ß-catenin signalling, has been shown to induce epithelial morphogenesis. It was also reported that the overexpression of ARL4C, due to alterations in the EGF/RAS-MAPK pathway and Wnt/ß-catenin signalling, promotes tumourigenesis. However, the roles of ARL4C in ameloblastoma are unknown. We investigated the involvement of ARL4C in the development of ameloblastoma. In immunohistochemical analyses of tissue specimens obtained from 38 ameloblastoma patients, ARL4C was hardly detected in non-tumour regions but tumours frequently showed strong expression of ARL4C, along with the expression of both BRAFV600E and RAF1 (also known as C-RAF). Loss-of-function experiments using inhibitors or siRNAs revealed that ARL4C elevation depended on the RAF1-MEK/ERK pathway in ameloblastoma cells. It was also shown that the RAF1-ARL4C and BRAFV600E-MEK/ERK pathways promoted cell proliferation independently. ARL4C-depleted tumour cells (generated by knockdown or knockout) exhibited decreased proliferation and migration capabilities. Finally, when ameloblastoma cells were co-cultured with mouse bone marrow cells and primary osteoblasts, ameloblastoma cells induced osteoclast formation. ARL4C elevation in ameloblastoma further promoted its formation capabilities through the increased RANKL expression of mouse bone marrow cells and/or primary osteoblasts. These results suggest that the RAF1-MEK/ERK-ARL4C axis, which may function in cooperation with the BRAFV600E-MEK/ERK pathway, promotes ameloblastoma development. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Ameloblastoma/metabolismo , Proliferación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Osteoclastos/patología , Ameloblastoma/genética , Proliferación Celular/fisiología , Transformación Celular Neoplásica/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Osteoclastos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Vía de Señalización Wnt/genética
13.
J Immunol ; 207(1): 268-280, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34162726

RESUMEN

Expression and activity of serum- and glucocorticoid-inducible kinase 1 (SGK1) are associated with many metabolic and inflammatory diseases. In this study, we report that SGK1 promotes alternative macrophage polarization and restrains inflammation in the infectious milieu of the gingiva. Inhibition of SGK1 expression or activity enhances characteristics of classically activated (M1) macrophages by directly activating the transcription of genes encoding iNOS, IL-12P40, TNF-α, and IL-6 and repressing IL-10 at message and protein levels. Moreover, SGK1 inhibition robustly reduces the expression of alternatively activated (M2) macrophage molecular markers, including arginase-1, Ym-1, Fizz1, and Mgl-1. These results were confirmed by multiple gain- and loss-of-function approaches, including small interfering RNA, a plasmid encoding SGK1, and LysM-Cre-mediated sgk1 gene knockout. Further mechanistic analysis showed that SGK1 deficiency decreases STAT3 but increases FoxO1 expression in macrophages under M2 or M1 macrophage-priming conditions, respectively. Combined with decreased FoxO1 phosphorylation and the subsequent suppressed cytoplasmic translocation observed, SGK1 deficiency robustly enhances FoxO1 activity and drives macrophage to preferential M1 phenotypes. Furthermore, FoxO1 inhibition abrogates M1 phenotypes, and STAT3 overexpression results in a significant increase of M2 phenotypes, indicating that both FoxO1 and STAT3 are involved in SGK1-mediated macrophage polarization. Additionally, SGK1 differentially regulates the expression of M1 and M2 molecular markers, including CD68 and F4/F80 and CD163 and CD206, respectively, and protects against Porphyromonas gingivalis-induced alveolar bone loss in a mouse model. Taken together, these results have demonstrated that SGK1 is critical for macrophage polarization and periodontal bone loss, and for the first time, to our knowledge, we elucidated a bifurcated signaling circuit by which SGK1 promotes alternative, while suppressing inflammatory, macrophage polarization.


Asunto(s)
Proteína Forkhead Box O1/inmunología , Proteínas Inmediatas-Precoces/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Factor de Transcripción STAT3/inmunología , Animales , Activación de Macrófagos/inmunología , Ratones , Transducción de Señal/inmunología
14.
Clin Oral Investig ; 28(1): 56, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38157055

RESUMEN

OBJECTIVES: This study aimed to identify genetic variants associated with non-syndromic tooth agenesis (TA) in nine families from Mongolia using whole-exome sequencing (WES) and bioinformatics analysis. MATERIAL AND METHODS: The study enrolled 41 participants, including three inherited and six non-inherited families. WES analysis was performed on 14 saliva samples from individuals with non-syndromic TA. The potential candidate genes were identified through variant filtering and segregation analysis. The filtered variants were then analyzed in silico mutation impact analysis. RESULTS: WES analysis identified 21 variants associated with TA, and 5 of these variants met all filtering criteria. These variants were located in the exome region of MAST4, ITGA6, PITX2, CACNA1S, and CDON genes. The variant in PITX2 was found in eight participants from inherited and non-inherited families, while the MAST4 variant was identified in 6 participants from inherited families. CONCLUSIONS: The study identified various genetic variant candidates associated with TA in different family groups, with PITX2 being the most commonly identified. Our findings suggest that MAST4 may also be a novel candidate gene for TA due to its association with the Wnt signaling pathway. Additionally, we found that five candidate genes related to focal adhesion and calcium channel complex were significant and essential in tooth development. CLINICAL RELEVANCE: Identifying new pathogenic genes associated with TA can improve our understanding of the molecular mechanisms underlying the disease, leading to better diagnosis, prevention, and treatment. Early detection of TA based on biomarkers can improve dental management and facilitate orthodontic and prosthetic treatment.


Asunto(s)
Enfermedades Dentales , Vía de Señalización Wnt , Humanos , Mutación , Linaje , Proteínas Asociadas a Microtúbulos , Proteínas Serina-Treonina Quinasas
15.
Clin Oral Investig ; 27(4): 1409-1421, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36826515

RESUMEN

OBJECTIVE: This study aimed to evaluate whether sex and genetic polymorphisms impact the oral health-related quality of life (OHRQoL) preoperatively and the difference between preoperative and postoperative OHRQoL in skeletal Class III patients submitted to orthognathic surgery. MATERIALS AND METHODS: This longitudinal study consisted of ninety-nine patients with skeletal Class III malocclusion who required orthognathic surgery. The Oral Health Impact Profile-14 (OHIP-14) is a questionnaire used to assess the OHRQoL with a 5-point Likert-type scale, covering seven domains related to physical and psychosocial factors. The questionnaire was applied in the preoperative and postoperative periods, and the difference scores were calculated to assess the OHRQoL after orthognathic surgery. The DNA was extracted from oral mucosa cells to evaluate genetic polymorphisms in ANKK1, DRD2, ESR1, and ESR2 through real-time PCR. RESULTS: There was an improvement in all OHRQoL domains following orthognathic surgery (p < 0.05). In the preoperative evaluation, women presented worse OHRQoL (p < 0.05) than men. There was no statistical difference between sex and the OHRQoL after surgery (p > 0.05). When evaluating the polymorphisms and preoperative OHIP-14 scores, CT genotype patients for rs1800497 (ANKK1) had a worse perception of the physical pain domain than CC genotype (p = 0.026), and CC genotype patients for rs1256049 (ESR2) had a worse perception of the functional limitation domain than CT genotype (p = 0.002). In the analysis between polymorphisms and postoperative and preoperative difference scores, CT genotype patients for rs1256049 (ESR2) had a greater improvement in the perception of the physical pain domain than the CC genotype (p = 0.031). In rs6275 and rs6276 (DRD2), patients with the CC genotype worsened the perception of the functional limitation domain than the TT genotype (p = 0.045), and AA genotype patients worsened the perception of the functional limitation domain than GG genotype (p = 0.048) after surgery, respectively. In addition, patients with the CT genotype for rs1800497 (ANKK1) had a greater improvement of OHRQoL perception in the total scale than the TT genotype (p = 0.018), and CT genotype patients had a greater improvement in the perception of function limitation domain than TT genotype (p = 0.017). CONCLUSION: Women have a worse perception of OHRQoL in the preoperative period of orthognathic surgery. Furthermore, polymorphisms in the ANKK1, DRD2, and ESR2 genes could be involved with OHRQoL in the preoperative period and following orthognathic surgery. CLINICAL RELEVANCE: The knowledge of the genetic background concerning OHRQoL in skeletal class III patients would aid in clinical practice to screen for associated genetic factors and prevent OHRQoL deterioration, especially after orthognathic surgery, considering that patients' genetic profiles would soon be available.


Asunto(s)
Maloclusión de Angle Clase III , Cirugía Ortognática , Procedimientos Quirúrgicos Ortognáticos , Masculino , Humanos , Femenino , Calidad de Vida/psicología , Procedimientos Quirúrgicos Ortognáticos/psicología , Estudios Longitudinales , Maloclusión de Angle Clase III/genética , Maloclusión de Angle Clase III/cirugía , Encuestas y Cuestionarios , Salud Bucal , Proteínas Serina-Treonina Quinasas
16.
BMC Oral Health ; 23(1): 1032, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129878

RESUMEN

BACKGROUD: Hypoadiponectinemia is the important cause of insulin resistance. Recent studies have shown that periodontitis is associated with hypoadiponectinemia. The purpose of this study was to investigate the effect of periodontitis-induced endoplasmic reticulum stress (ERS) in visceral adipocytes on hypoadiponectinemia. METHODS: Rat periodontitis models were established by local ligation with silk around the bilateral maxillary second molars. Porphyromonas gingivalis-lipopolysaccharid (P.g-LPS) was also used to stimulate the visceral adipocytes in vitro. The protein expression levels of glucose regulated protein 78 (GRP78), inositol-requiring protein 1α (IRE1α), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and adiponectin were detected. IRE1α lentiviruses were transfected into visceral adipocytes in vitro, and an IRE1α inhibitor (KIRA6) was injected in epididymal adipose tissue of rats to detect and verify the effect of ERS on adiponectin expression in visceral adipocytes in vivo. RESULTS: Hypoadiponectinemia was observed in periodontitis rat, and the expression levels of ERS key proteins GRP78 and the phosphorylation levels of IRE1α (p-IRE1α)/IRE1α in visceral adipocytes were increased, while the expression levels of adiponectin protein were decreased. After KIRA6 injection into epididymal adipose tissue of rats with periodontitis, adiponectin levels in visceral adipocytes increased, and serum adiponectin levels recovered to a certain extent. The protein expression levels of GRP78 and p-IRE1α/IRE1α were increased and adiponectin protein expression was decreased in P.g-LPS-induced visceral adipocytes. Overexpression of IRE1α further inhibited adiponectin expression in P.g-LPS-stimulated visceral adipocytes, and conversely, IRE1α inhibition restored adiponectin expression. CONCLUSIONS: Our findings suggest that periodontitis induces ERS in visceral adipocytes leading to hypoadiponectinemia. IRE1α is a key protein regulating adiponectin expression in visceral adipocytes.


Asunto(s)
Adiponectina , Periodontitis , Ratas , Animales , Adiponectina/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Chaperón BiP del Retículo Endoplásmico , Lipopolisacáridos/farmacología , Adipocitos/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Periodontitis/metabolismo
17.
J Biol Chem ; 297(2): 100919, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34181950

RESUMEN

Serum- and glucocorticoid-regulated kinase 3 (Sgk3) is a serine/threonine protein kinase activated by the phospholipid phosphatidylinositol 3-phosphate (PI3P) downstream of growth factor signaling via class I phosphatidylinositol 3-kinase (PI3K) signaling and by class III PI3K/Vps34-mediated PI3P production on endosomes. Upregulation of Sgk3 activity has recently been linked to a number of human cancers; however, the precise mechanism of activation of Sgk3 is unknown. Here, we use a wide range of cell biological, biochemical, and biophysical techniques, including hydrogen-deuterium exchange mass spectrometry, to investigate the mechanism of activation of Sgk3 by PI3P. We show that Sgk3 is regulated by a combination of phosphorylation and allosteric activation. We demonstrate that binding of Sgk3 to PI3P via its regulatory phox homology (PX) domain induces large conformational changes in Sgk3 associated with its activation and that the PI3P-binding pocket of the PX domain of Sgk3 is sequestered in its inactive conformation. Finally, we reconstitute Sgk3 activation via Vps34-mediated PI3P synthesis on phosphatidylinositol liposomes in vitro. In addition to identifying the mechanism of Sgk3 activation by PI3P, our findings open up potential therapeutic avenues in allosteric inhibitor development to target Sgk3 in cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Endosomas/metabolismo , Liposomas/química , Neoplasias/patología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Técnicas In Vitro , Liposomas/metabolismo , Espectrometría de Masas/métodos , Neoplasias/enzimología , Fosfatos de Fosfatidilinositol/química , Proteínas Serina-Treonina Quinasas/química , Elementos Estructurales de las Proteínas , Transducción de Señal
18.
J Cell Physiol ; 237(8): 3381-3393, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35696529

RESUMEN

Cytoplasmic serine/threonine Pim kinases have emerged as important modulators of immune regulation and oncology. However, their regulatory roles in bone remodeling remain obscure. Here, we aimed to determine the roles of Pim kinases in periodontal disease (PD), focusing on the regulation of osteoclastogenesis and bone resorptive activity. We investigated Pim kinases expression in PD by analyzing data from the online Gene Expression Omnibus database and using ligature-induced periodontitis mouse model. The expression of Pim kinases during receptor activator of nuclear factor kB ligand (RANKL)-induced osteoclastogenesis was assessed in mouse bone marrow-derived macrophages (BMMs) using reverse transcription polymerase chain reaction. Osteoclast differentiation and bone resorption activity were respectively verified by tartrate-resistant acid phosphatase staining and dentin disc-based bone resorption assays. We silenced and overexpressed Pim-2 using small interfering RNA (siRNA) and retroviral vector, respectively, to investigate the molecular mechanisms underlying Pim-2 regulation in RANKL-induced osteoclastogenesis and bone resorption activity. Upregulated expression of Pim-2 was observed in both patients with PD and periodontitis-affected mouse gingival tissues. siRNA-mediated silencing of Pim-2 in BMMs diminished RANKL-induced resorptive activity without affecting osteoclastogenesis. Moreover, RANKL-triggered stimulation of a3 isoform, which is a subunit of vacuolar-type ATPase, was selectively attenuated in BMMs on silencing Pim-2. The overexpression of Pim-2 with a retroviral vector stimulated the a3 subunit, thus inducing bone resorption activity. Taken together, these results suggest that Pim-2 acts as a major modulator of osteoclastic activity by regulating a3 isoform expression in PD.


Asunto(s)
Resorción Ósea , Enfermedades Periodontales , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , ATPasas de Translocación de Protón Vacuolares , Animales , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Silenciador del Gen , Ratones , Osteoclastos/metabolismo , Enfermedades Periodontales/genética , Enfermedades Periodontales/metabolismo , Periodontitis/genética , Periodontitis/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ligando RANK/metabolismo , ARN Interferente Pequeño/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
19.
Ecotoxicol Environ Saf ; 248: 114332, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36446169

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) widely exist in human living environment and enter the body through water, food chain and breathing. Several studies have shown that MPs or NPs disrupt the blood-testis barrier in rodents. However, the molecular mechanism by which MPs and NPs damage the blood-testis barrier remains unclear. In the present study, our aim was to investigate the molecular mechanism of the destruction of blood-testis barrier induced by polystyrene (PS)-NPs. Mice were treated with 50 µg/kg·day PS-NPs by tail vein injection once daily for two consecutive days. The results showed that PS-NPs exposure significantly decreased the levels of tight junction (TJ) proteins ZO-2, occludin and claudin-11 in testis of mice. In vitro, we used TM4 Sertoli cells to explore the underlying mechanism of the decrease in TJ proteins induced by PS-NPs. We found that PS-NPs activated IRE1α and induced its downstream XBP1 splicing, which in turn elevated the expression of the E3 ubiquitin ligase CHIP, then CHIP triggers proteasomal degradation of ZO-2, occludin, and claudin-11 proteins. Our findings suggest that IRE1α/XBP1s/CHIP pathway is a pivotal mechanism of TJ proteins degradation induced by PS-NPs in mouse Sertoli cells. In conclusion, our results reveal that the degradation of TJ proteins is one of the mechanisms of blood-testis barrier destruction caused by acute exposure to PS-NPs.


Asunto(s)
Endorribonucleasas , Poliestirenos , Humanos , Masculino , Animales , Ratones , Poliestirenos/toxicidad , Microplásticos , Proteínas Serina-Treonina Quinasas , Proteínas de Uniones Estrechas , Ocludina , Células de Sertoli , Plásticos , Claudinas , Proteína 1 de Unión a la X-Box
20.
J Card Surg ; 37(8): 2367-2374, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35577768

RESUMEN

BACKGROUND: Comparative data on the clinical outcomes of TTK Chitra mechanical heart valve prosthesis (CHVP), an indigenously developed low-cost tilting disc valve and commonly used bileaflet valve, the St. Jude medical (SJM) prosthesis are sparse. METHODS: We conducted a retrospective follow-up study of consecutive patients undergoing mitral (MVR) and aortic valve replacement (AVR) with SJM or CHVP mechanical prostheses over a 6-year period at our institution. RESULTS: Seven hundred and thirty-five patients who underwent isolated MVR (n = 510) or AVR (n = 225) were included in the study. Patients with CHVP were younger and belonged to a lower socioeconomic class. The study cohort was followed-up for 2836 patient-years (SJM: 1865.1, CHVP: 971.0). All-cause mortality (p = 0.894), valve-related mortality (p = 0.681), prosthetic valve thrombosis (p = 0.155), embolism (p = 0.210), hemorrhage (p = 0.959) and infective endocarditis (IE, p = 0.084) were similar between both valve on follow-up. Estimated event free survival was 2302 ± 1 days in SJM as compared to 2484 ± 65 days in CHVP group (p = 0.393). Valve type was not an independent predictor of adverse events after adjusting for baseline data, time in therapeutic range and aspirin use. Subgroup analysis of patients who underwent MVR and AVR showed similar functional improvement and outcomes, except for a higher incidence of IE with SJM at the aortic position (p = 0.041). CONCLUSION: The indigenously developed, low-cost CHVP has comparable midterm clinical performance as SJM in aortic or mitral positions.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Válvula Aórtica/cirugía , Proteínas de Ciclo Celular , Aleaciones Dentales , Estudios de Seguimiento , Prótesis Valvulares Cardíacas/efectos adversos , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Humanos , Válvula Mitral/cirugía , Diseño de Prótesis , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA