Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 42(15): 9553-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25092923

RESUMEN

Genomes of eukaryotes are partitioned into domains of functionally distinct chromatin states. These domains are stably inherited across many cell generations and can be remodeled in response to developmental and external cues, hence contributing to the robustness and plasticity of expression patterns and cell phenotypes. Remarkably, recent studies indicate that these 1D epigenomic domains tend to fold into 3D topologically associated domains forming specialized nuclear chromatin compartments. However, the general mechanisms behind such compartmentalization including the contribution of epigenetic regulation remain unclear. Here, we address the question of the coupling between chromatin folding and epigenome. Using polymer physics, we analyze the properties of a block copolymer model that accounts for local epigenomic information. Considering copolymers build from the epigenomic landscape of Drosophila, we observe a very good agreement with the folding patterns observed in chromosome conformation capture experiments. Moreover, this model provides a physical basis for the existence of multistability in epigenome folding at sub-chromosomal scale. We show how experiments are fully consistent with multistable conformations where topologically associated domains of the same epigenomic state interact dynamically with each other. Our approach provides a general framework to improve our understanding of chromatin folding during cell cycle and differentiation and its relation to epigenetics.


Asunto(s)
Cromatina/química , Epigénesis Genética , Modelos Genéticos , Animales , Biopolímeros/química , Cromatina/metabolismo , Drosophila melanogaster/genética , Proteínas del Grupo Polycomb/metabolismo
2.
Dev Biol ; 367(2): 140-53, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22562112

RESUMEN

Rodent incisors are capable of growing continuously and the renewal of dental epithelium giving rise to enamel-forming ameloblasts and dental mesenchyme giving rise to dentin-forming odontoblasts and pulp cells is achieved by stem cells residing at their proximal ends. Although the dental epithelial stem cell niche (cervical loop) is well characterized, little is known about the dental mesenchymal stem cell niche. Ring1a/b are the core Polycomb repressive complex1 (PRC1) components that have recently also been found in a protein complex with BcoR (Bcl-6 interacting corepressor) and Fbxl10. During mouse incisor development, we found that genes encoding members of the PRC1 complex are strongly expressed in the incisor apical mesenchyme in an area that contains the cells with the highest proliferation rate in the tooth pulp, consistent with a location for transit amplifying cells. Analysis of Ring1a(-/-);Ring1b(cko/cko) mice showed that loss of Ring1a/b postnatally results in defective cervical loops and disturbances of enamel and dentin formation in continuously growing incisors. To further characterize the defect found in Ring1a(-/-);Ring1b(cko/cko) mice, we demonstrated that cell proliferation is dramatically reduced in the apical mesenchyme and cervical loop epithelium of Ring1a(-/-);Ring1b(cko/cko) incisors in comparison to Ring1a(-/-);Ring1b(fl/fl)cre- incisors. Fgf signaling and downstream targets that have been previously shown to be important in the maintenance of the dental epithelial stem cell compartment in the cervical loop are downregulated in Ring1a(-/-);Ring1b(cko/cko) incisors. In addition, expression of other genes of the PRC1 complex is also altered. We also identified an essential postnatal requirement for Ring1 proteins in molar root formation. These results show that the PRC1 complex regulates the transit amplifying cell compartment of the dental mesenchymal stem cell niche and cell differentiation in developing mouse incisors and is required for molar root formation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Incisivo/citología , Incisivo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Represoras/metabolismo , Nicho de Células Madre/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Esmalte Dental/citología , Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/metabolismo , Dentina/citología , Dentina/crecimiento & desarrollo , Dentina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Incisivo/anomalías , Incisivo/crecimiento & desarrollo , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Ratones Transgénicos , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Nicho de Células Madre/genética , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
3.
Mol Genet Genomic Med ; 10(3): e1879, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122698

RESUMEN

BACKGROUND: Nance-Horan syndrome (NHS) is a rare X-linked genetic disorder characterized by ophthalmologic and dental anomalies as well as dysmorphic facies. The clinical phenotype in males includes congenital cataracts, vision loss, microcornea, nystagmus, microphthalmia, glaucoma, screwdriver blade-shaped incisors, supernumerary maxillary incisors, diastema, delays, intellectual disability, and dysmorphic facies. With the evolution of array-CGH technology, a total of five kindreds with NHS have been reported in the medical literature with microdeletions encompassing the NHS gene rather than sequencing variants. METHODS: The patient is a 19-year-old male born to non-consanguineous parents with a past medical history of bilateral congenital cataracts, nystagmus, poor vision, glaucoma, screwdriver blade-shaped incisors, global developmental delay, intellectual disability, bilateral sensorineural hearing loss, axial hypotonia, and bilateral foot contractures. RESULTS: A chromosomal microarray (CMA) was performed and revealed a 1.83-Mb interstitial microdeletion at Xp22.2p22.13 (16,604,890-18,435,836) (GRCh37/hg19) that included NHS, CTPS2, S100G, TXLNG, RBBP7, REPS2, SCML1, RAI2, and SCML2. CONCLUSION: Here, we report the second largest microdeletion causative of NHS which also encompasses the remaining four kindreds in hopes of offering a unique perspective at the clinical variability within NHS, investigate genes of interest, and expand the phenotype.


Asunto(s)
Catarata , Glaucoma , Discapacidad Intelectual , Proteínas de Unión al Calcio , Catarata/congénito , Catarata/genética , Facies , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Discapacidad Intelectual/genética , Masculino , Proteínas del Grupo Polycomb , Anomalías Dentarias
4.
Acta Histochem ; 120(3): 215-220, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29415809

RESUMEN

Polycomb group (PcG) proteins are repressive chromatin modifiers required for proliferation and development. PcG proteins form two large repressive complexes, namely, Polycomb Repressive Complex 1 and 2. These proteins have been shown to drive tumorigenesis by repressing cell-type specific sets of target genes. Using immunohistochemistry, we investigated the expression patterns of five human PcG proteins, including Bmi-1, Ring1b, Mel-18, Ezh2, and Suz12, in various cellular components of odontogenic keratocysts (OKCs), ameloblastomas and, pericoronal follicles (PFs). In OKCs, expression of PcG proteins were found in the majority of cases while the expression pattern was relatively different for each PcG proteins. All PcG proteins were strongly expressed in the basal cells while some proteins showed variable expression in the parabasal and luminal cell layer of OKCs. In ameloblastomas, almost all PcG proteins showed a similar expression pattern of moderate to strong staining in the peripheral ameloblast-like cells and metaplastic squamous cells. Some of the central stellate reticulum-like cells also showed positive reaction to most PcG proteins. In PFs, most PcG proteins were intensely expressed in odontogenic epithelium lining the follicles, except Mel-18 and Suz12. The present study provides the initial evidence regarding epigenetic involvement by PcG proteins in these odontogenic lesions. Although these proteins are known to be in the same repressive group proteins, differential expression patterns of these proteins in OKCs and ameloblastomas indicates that these proteins may play different roles in pathogenesis of these odontogenic lesions.


Asunto(s)
Ameloblastoma/fisiopatología , Neoplasias Maxilomandibulares/fisiopatología , Quistes Odontogénicos/patología , Proteínas del Grupo Polycomb , Adulto , Femenino , Humanos , Inmunohistoquímica , Masculino , Proteínas del Grupo Polycomb/farmacología , Coloración y Etiquetado
5.
Birth Defects Res ; 109(11): 866-868, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28464487

RESUMEN

BACKGROUND: Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder characterized by congenital cataract, dental anomalies and facial dysmorphisms. Notably, up to 30% of NHS patients have intellectual disability and a few patients have been reported to have congenital cardiac defects. Nance-Horan syndrome is caused by mutations in the NHS gene that is highly expressed in the midbrain, retina, lens, tooth, and is conserved across vertebrate species. Although most pathogenic mutations are nonsense mutations, a few genomic rearrangements involving NHS locus have been reported, suggesting a possible pathogenic role of the flanking genes. METHODS: Here, we report a microdeletion of 170,6 Kb at Xp22.13 (17.733.948-17.904.576) (GRCh37/hg19), detected by array-based comparative genomic hybridization in an Italian boy with NHS syndrome. RESULTS: The microdeletion harbors the NHS, SCLML1, and RAI2 genes and results in a phenotype consistent with NSH syndrome and developmental delay. CONCLUSION: We compare our case with the previous Xp22.13 microdeletions and discuss the possible pathogenetic role of the flanking genes. Birth Defects Research 109:866-868, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Catarata/congénito , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Anomalías Dentarias/genética , Catarata/genética , Catarata/metabolismo , Deleción Cromosómica , Cromosomas Humanos X/genética , Codón sin Sentido , Hibridación Genómica Comparativa/métodos , Exones/genética , Genes Ligados a X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Lactante , Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intercelular , Masculino , Proteínas de la Membrana , Mutación , Proteínas Nucleares/genética , Linaje , Fenotipo , Proteínas del Grupo Polycomb/genética , Proteínas/genética , Aberraciones Cromosómicas Sexuales/embriología , Síndrome , Anomalías Dentarias/metabolismo
6.
Sci STKE ; 2005(286): re7, 2005 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-15928333

RESUMEN

Protein-protein interactions are essential for the assembly, regulation, and localization of functional protein complexes in the cell. SAM domains are among the most abundant protein-protein interaction motifs in organisms from yeast to humans. Although SAM domains adopt similar folds, they are remarkably versatile in their binding properties. Some identical SAM domains can interact with each other to form homodimers or polymers. In other cases, SAM domains can bind to other related SAM domains, to non-SAM domain-containing proteins, and even to RNA. Such versatility earns them functional roles in myriad biological processes, from signal transduction to transcriptional and translational regulation. In this review, we describe the structural basis of SAM domain interactions and highlight their roles in the scaffolding of protein complexes in normal and pathological processes.


Asunto(s)
Unión Proteica , Estructura Terciaria de Proteína , Animales , Biopolímeros , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Células Eucariotas/metabolismo , Proteínas del Ojo/química , Proteínas del Ojo/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/fisiología , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Fosforilación , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Proto-Oncogénicas c-ets/fisiología , ARN/metabolismo , Receptores de la Familia Eph/química , Proteínas Represoras/química , Proteínas Represoras/fisiología , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteína ETS de Variante de Translocación 6
7.
Curr Biol ; 26(15): R710-R712, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505242

RESUMEN

Polycomb Group (PcG) proteins assemble a chromatin state that maintains developmental gene repression. A new study combining structure and in vivo analysis details a molecular network from DNA recognition to PcG recruitment, highlighting the essential role of Sterile Alpha Motifs.


Asunto(s)
Cromatina , Proteínas de Drosophila/genética , Enfermedades del Desarrollo Óseo , Conducto Auditivo Externo/anomalías , Mandíbula/anomalías , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/genética , Proteínas Represoras
8.
Nat Commun ; 7: 10291, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26759081

RESUMEN

The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Espacio Intranuclear/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Drosophila , Técnica del Anticuerpo Fluorescente , Microscopía , Simulación de Dinámica Molecular , Imagen Óptica , Proteínas del Grupo Polycomb/metabolismo , Polímeros , Estructura Cuaternaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
9.
Sci Signal ; 3(125): pe20, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20530801

RESUMEN

Ischemic tolerance is an evolutionarily conserved form of cerebral plasticity in which a brief period of cerebral ischemia (called ischemic preconditioning) confers transient tolerance to a subsequent ischemic challenge in the brain. Polycomb group proteins are gene-silencing factors that are abundant and widely distributed during embryogenesis and are essential to epigenetic cellular memory, pluripotency, and stem cell self-renewal. New insight into the molecular mechanisms underlying ischemic tolerance is highlighted by the finding that ischemic preconditioning activates polycomb proteins in mature neurons. Polycomb proteins act through epigenetic gene silencing to eradicate potential mediators of neuronal death and promote cellular arrest, enabling mature neurons to survive ischemic stroke.


Asunto(s)
Muerte Celular , Neuronas/citología , Proteínas Represoras/fisiología , Animales , Evolución Biológica , Epigénesis Genética , Silenciador del Gen , Humanos , Proteínas del Grupo Polycomb
10.
Genet Res ; 87(2): 93-107, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16709273

RESUMEN

The sex comb on the forelegs of Drosophila males is a secondary sexual trait, and the number of teeth on these combs varies greatly within and between species. To understand the relationship between the intra- and interspecific variation, we performed quantitative trait locus (QTL) analyses of the intraspecific variation in sex-comb tooth number. We used five mapping populations derived from two inbred Drosophila simulans strains that were divergent in the number of sex-comb teeth. Although no QTLs were detected on the X chromosome, we identified four QTLs on the second chromosome and three QTLs on the third chromosome. While identification and estimated effects of the second-chromosome QTLs depend on genetic backgrounds, significant and consistent effects of the two third-chromosome QTLs were found in two genetic backgrounds. There were significant epistatic interactions between a second-chromosome QTL and a third-chromosome QTL, as well as between two second-chromosome QTLs. The third-chromosome QTLs are concordant with the locations of the QTLs responsible for the previously observed differences in sex-comb tooth number between D. simulans and D. mauritiana.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Variación Genética , Proteínas Represoras/genética , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , Epistasis Genética , Femenino , Genoma de los Insectos , Masculino , Proteínas del Grupo Polycomb , Sitios de Carácter Cuantitativo , Especificidad de la Especie
11.
J Biol Chem ; 280(30): 27769-75, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15905166

RESUMEN

The polycomb group proteins are required for the stable maintenance of gene repression patterns established during development. They function as part of large multiprotein complexes created via a multitude of protein-protein interaction domains. Here we examine the interaction between the SAM domains of the polycomb group proteins polyhomeotic (Ph) and Sex-comb-on-midleg (Scm). Previously we showed that Ph-SAM polymerizes as a helical structure. We find that Scm-SAM also polymerizes, and a crystal structure reveals an architecture similar to the Ph-SAM polymer. These results suggest that Ph-SAM and Scm-SAM form a copolymer. Binding affinity measurements between Scm-SAM and Ph-SAM subunits in different orientations indicate a preference for the formation of a single junction copolymer. To provide a model of the copolymer, we determined the structure of the Ph-SAM/Scm-SAM junction. Similar binding modes are observed in both homo- and heterocomplex formation with minimal change in helix axis direction at the polymer joint. The copolymer model suggests that polymeric Scm complexes could extend beyond the local domains of polymeric Ph complexes on chromatin, possibly playing a role in long range repression.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Nucleoproteínas/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Cromatina/química , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Drosophila melanogaster , Glutatión Transferasa/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Mutación , Nucleoproteínas/química , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Polímeros/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/química , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA