Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739468

RESUMEN

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Asunto(s)
Alopecia , Folículo Piloso , Indoles , Polímeros , Quercetina , Especies Reactivas de Oxígeno , Alopecia/tratamiento farmacológico , Alopecia/patología , Quercetina/farmacología , Quercetina/administración & dosificación , Quercetina/química , Animales , Indoles/química , Indoles/farmacología , Folículo Piloso/efectos de los fármacos , Folículo Piloso/crecimiento & desarrollo , Polímeros/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Humanos , Cabello/efectos de los fármacos , Cabello/crecimiento & desarrollo , Proliferación Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino
2.
J Nanobiotechnology ; 22(1): 94, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449005

RESUMEN

BACKGROUND: Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS: In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION: In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.


Asunto(s)
FN-kappa B , Periodontitis , Humanos , Quercetina/farmacología , Periodontitis/tratamiento farmacológico , Flavonoides , Inflamación , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis
3.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849931

RESUMEN

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Asunto(s)
Quitosano , Emulsiones , Hidrogeles , Nanopartículas del Metal , Quercetina , Plata , Piel , Cicatrización de Heridas , Quercetina/química , Quercetina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Animales , Emulsiones/química , Ratones , Humanos , Piel/efectos de los fármacos , Piel/lesiones , Nanopartículas del Metal/química , Plata/química , Hidrogeles/química , Materiales Biocompatibles/química , Vendajes , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Celulosa/química , Masculino , Regeneración/efectos de los fármacos , Células HaCaT , Oxidación-Reducción , Metilgalactósidos
4.
Drug Dev Ind Pharm ; 50(6): 561-575, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38832870

RESUMEN

INTRODUCTION: Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy. SIGNIFICANCE: Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy. METHODS: CoFe2O4 magnetic NPs (MNPs) were conjugated with nanoliposomes to form MLs, and the anticancer drug quercetin (Que) was loaded into MLs, forming Que-MLs composites for antitumor approach. The aim was to prepare Que-MLs for DD systems (DDS) under an alternating magnetic field (AMF), termed chemotherapy/hyperthermia (chemo-HT) techniques. The encapsulation efficiency (EE), drug loading capacity (DL), and drug release (DR) of Que and Que-MLs were evaluated. RESULTS: The results confirmed successful Que-loading on the surface of MLs, with an average diameter of 38 nm and efficient encapsulation into MLs (69%). In vitro, experimental results on MCF-7 breast cells using MHT showed high cytotoxic effects of novel Que-MLs on MCF-7 cells. Various analyses, including cytotoxicity, apoptosis, cell migration, western blotting, fluorescence imaging, and cell membrane internalization, were conducted. The Acridine Orange-ethidium bromide double fluorescence test identified 35% early and 55% late apoptosis resulting from Que-MLs under the chemo-HT group. TEM results indicated MCF-7 cell membrane internalization and digestion of Que-MLs, suggesting the presence of early endosome-like vesicles on the cytoplasmic periphery. CONCLUSIONS: Que-MLs exhibited multi-modal chemo-HT effects, displaying high toxicity against MCF-7 BC cells and showing promise as a potent cytotoxic agent for BC chemotherapy.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Daño del ADN , Hipertermia Inducida , Liposomas , Quercetina , Humanos , Quercetina/farmacología , Quercetina/administración & dosificación , Quercetina/química , Células MCF-7 , Apoptosis/efectos de los fármacos , Hipertermia Inducida/métodos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Daño del ADN/efectos de los fármacos , Cobalto/química , Cobalto/administración & dosificación , Cobalto/farmacología , Femenino , Compuestos Férricos/química , Liberación de Fármacos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Supervivencia Celular/efectos de los fármacos , Campos Magnéticos
5.
Molecules ; 29(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338352

RESUMEN

Neurodegenerative diseases (NDDs) are mainly induced by oxidative stress which produces excessive reactive oxygen species (ROS). Quercetin (QU) is a potent antioxidant with some effects on NDDs. This study prepared and characterized a novel glucose-modified QU liposome (QU-Glu-Lip), aiming not only to overcome QU's poor water solubility and bioavailability but also to deliver more QU to brain tissue to enhance its neuroprotective effect. QU-Glu-Lip possessed encapsulation efficiency (EE) of 89.9%, homogenous particle sizes (116-124 nm), small PDI value (<0.3), zeta value -1.363 ± 0.437 mV, proper pH and salt stability, and proper cytotoxicity. The glucose-modified liposome penetrated the blood-brain barrier (BBB) mediated via the glucose transporter 1 (GLUT1) and was taken by neuronal cells more efficiently than liposome without glucose, according to bEnd.3 and PC12 cell tests. QU-Glu-Lip attenuated H2O2-induced oxidative damage to PC12 with higher cell viability (88.42%) and lower intracellular ROS compared to that of QU. QU-Glu-Lip had higher brain target ability and delivered more QU to neuronal cells, effectively exerting the antioxidative neuroprotection effect. There is potential for the QU-Glu-Lip application for more effective treatment of NDDs.


Asunto(s)
Antioxidantes , Quercetina , Antioxidantes/farmacología , Quercetina/farmacología , Liposomas , Peróxido de Hidrógeno , Neuroprotección , Especies Reactivas de Oxígeno , Glucosa , Encéfalo
6.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893415

RESUMEN

The synergistic effect of drug and gene delivery is expected to significantly improve cancer therapy. However, it is still challenging to design suitable nanocarriers that are able to load simultaneously anticancer drugs and nucleic acids due to their different physico-chemical properties. In the present work, an amphiphilic block copolymer comprising a biocompatible poly(ethylene glycol) (PEG) block and a multi-alkyne-functional biodegradable polycarbonate (PC) block was modified with a number of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) side chains applying the highly efficient azide-alkyne "click" chemistry reaction. The resulting cationic amphiphilic copolymer with block and graft architecture (MPEG-b-(PC-g-PDMAEMA)) self-associated in aqueous media into nanosized micelles which were loaded with the antioxidant, anti-inflammatory, and anticancer drug quercetin. The drug-loaded nanoparticles were further used to form micelleplexes in aqueous media through electrostatic interactions with DNA. The obtained nanoaggregates-empty and drug-loaded micelles as well as the micelleplexes intended for simultaneous DNA and drug codelivery-were physico-chemically characterized. Additionally, initial in vitro evaluations were performed, indicating the potential application of the novel polymer nanocarriers as drug delivery systems.


Asunto(s)
ADN , Portadores de Fármacos , Metacrilatos , Micelas , Nylons , Quercetina , Quercetina/química , Quercetina/farmacología , Metacrilatos/química , ADN/química , Nylons/química , Portadores de Fármacos/química , Humanos , Polietilenglicoles/química , Nanopartículas/química , Polímeros/química
7.
Molecules ; 29(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930884

RESUMEN

Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol-cerium-quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics.


Asunto(s)
Lesión Pulmonar Aguda , Cerio , Manitol , Nanopartículas , Polímeros , Quercetina , Lesión Pulmonar Aguda/tratamiento farmacológico , Quercetina/farmacología , Quercetina/química , Animales , Manitol/química , Manitol/uso terapéutico , Nanopartículas/química , Ratones , Polímeros/química , Cerio/química , Cerio/farmacología , Cerio/uso terapéutico , Rutina/química , Rutina/farmacología , Rutina/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Sinergismo Farmacológico , Modelos Animales de Enfermedad , Lipopolisacáridos
8.
Pharm Dev Technol ; 29(6): 551-558, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38808380

RESUMEN

The purpose of this study was to investigate the impact of different functional stabilizers on in vitro/in vivo drug performances after oral administration of drug nanocrystals. Quercetin nanocrystals (QT-NCs) respectively stabilized by five types of functional stabilizers, including hydroxypropyl methyl cellulose E15 (HPMC E15), poloxamer 407 (P407), poloxamer 188 (P188), D-α-tocopherol polyethylene glycol succinate (TPGS), and glycyrrhizin acid (GL), were fabricated by wet media milling technique. The particle size, morphology, physical state, drug solubility, drug dissolution in vitro, and orally pharmacokinetic behaviors of all QT-NCs were investigated. All QT-NCs with similar particle size about 200 nm were obtained by controlling milling speed and milling time. No significant differences in particles shape and crystalline nature were found for QT-NCs stabilized by different functional stabilizers. But the solubility and dissolution of QT-NCs were significantly influenced by the different functional stabilizers. The AUC0∼t of all QT-NCs after oral administration was in the following order: QT-NCs/P188 ≈ QT-NCs/HPMC E15 > QT-NCs/GL > QT-NCs/P407 ≈ QT-NCs/TPGS, and the Cmax showed an order of QT-NCs/P407 > QT-NCs/P188 ≈ QT-NCs/GL > QT-NCs/HPMC E15 > QT-NCs/TPGS. Both of QT-NCs/P407 and QT-NCs/TPGS exhibited faster oral absorption with Tmax at 0.5 h and 0.83 h, respectively, while the other three QT-NCs (QT-NCs/P188, QT-NCs/GL and QT-NCs/HPMC E15) showed a relatively slow absorption with same Tmax at 5.33 h. The longest MRT0∼t (11.72 h) and t1/2z (32.22 h) were observed for QT-NCs/HPMC E15. These results suggested that the different functional stabilizers could significantly influence on drug solubility, drug dissolution in vitro and orally pharmacokinetic behavior of QT-NCs, and it is possible to alter the drug dissolution in vitro, oral absorption and drug retention in vivo by changing the type of functional stabilizers in NCs preparation.


Asunto(s)
Disponibilidad Biológica , Nanopartículas , Quercetina , Solubilidad , Quercetina/farmacocinética , Quercetina/administración & dosificación , Quercetina/química , Quercetina/farmacología , Nanopartículas/química , Animales , Administración Oral , Masculino , Tamaño de la Partícula , Ratas Sprague-Dawley , Liberación de Fármacos , Ratas , Excipientes/química , Poloxámero/química , Ácido Glicirrínico/química , Ácido Glicirrínico/farmacocinética , Ácido Glicirrínico/administración & dosificación , Vitamina E/química , Vitamina E/farmacocinética
9.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3515-3525, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39041123

RESUMEN

Regulating the process of epithelial-mesenchymal transition(EMT) is an essential strategy to inhibit tumor growth and metastasis. This study is based on the EMT process of retinoblastoma and constructs quercetin(QUE) and doxorubicin(DOX) co-loaded liposome(QD Lipo) to investigate the therapeutic effect and mechanisms of combined QUE and DOX treatment on retinoblastoma. Single-factor experiments were conducted to optimize the prescription process of QD Lipo. Eventually, spherical particles with a diameter of(108.87±1.93) nm, a PDI of 0.13±0.02, and a Zeta potential of(-34.83±1.92) mV were obtained. The encapsulation rates of QUE and DOX were 96.20%±4.40% and 91.17%±4.41%, respectively. Y79 human retinoblastoma cells were used as an in vitro cellular model, and confocal microscopy demonstrated that QD Lipo could enhance Y79 uptake efficiency. The CCK-8 assay confirmed that the optimal combination therapy effect of QUE and DOX occurred at a mass ratio of 1∶1 to 1∶2. Flow cytometry showed that QD Lipo enhanced the induction of apoptosis in Y79 cells. Western blot analysis revealed that QD Lipo significantly reduced the expression of EMT pathway-related proteins vimentin and α-SMA. Fluorescence assays detected a significant decrease in ROS levels in Y79 cells after treatment with QD. These results indicated that liposomal co-delivery of QUE and DOX can enhance drug delivery efficiency to retinoblastoma cells, inhibit the EMT process in retinoblastoma by downregulating ROS levels, and enhance the cytotoxicity of DOX against retinoblastoma.


Asunto(s)
Doxorrubicina , Transición Epitelial-Mesenquimal , Liposomas , Quercetina , Retinoblastoma , Quercetina/administración & dosificación , Quercetina/farmacología , Quercetina/química , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Retinoblastoma/tratamiento farmacológico , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Liposomas/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Especies Reactivas de Oxígeno/metabolismo
10.
Nanotechnology ; 35(11)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156649

RESUMEN

Quercetin (QU), a natural flavonoid with potent anti-inflammatory and antioxidant properties, holds promise in treating acute liver injury (ALI). Nonetheless, its limited solubility hampers its efficacy, and its systemic distribution lacks targeting, leading to off-target effects. To address these challenges, we developed macrophage membrane-coated quercetin-loaded PLGA nanoparticles (MVs-QU-NPs) for active ALI targeting. The resulting MVs-QU-NPs exhibited a spherical morphology with a clear core-shell structure. The average size and zeta potential were assessed as 141.70 ± 0.89 nm and -31.83 ± 0.76 mV, respectively. Further studies revealed sustained drug release characteristics from MVs-QU-NPs over a continuous period of 24 h. Moreover, these MVs-QU-NPs demonstrated excellent biocompatibility when tested on normal liver cells. The results of biodistribution analysis in ALI mice displayed the remarkable ALI-targeting ability of MVs-DiD-NPs, with the highest fluorescence intensity observed in liver tissue. This biomimetic approach combining macrophage membranes with nanoparticle delivery, holds great potential for targeted ALI treatment.


Asunto(s)
Ácido Láctico , Nanopartículas , Ratones , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico/química , Ácido Poliglicólico/química , Quercetina/farmacología , Quercetina/química , Distribución Tisular , Hígado , Nanopartículas/química , Portadores de Fármacos/química
11.
J Periodontal Res ; 58(5): 1082-1095, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37533377

RESUMEN

BACKGROUND AND OBJECTIVES: Cigarette smoking has been reported as an independent risk factor for periodontitis. Tobacco toxins affect periodontal tissue not only locally but also systemically, leading to the deterioration and recurrence of periodontitis. However, the mechanism of cigarette smoke-related periodontitis (CSRP) is unclear and thus lacks targeted treatment strategies. Quercetin, a plant-derived polyphenolic flavonoid, has been reported to have therapeutic effects on periodontitis due to its documented antioxidant activity. This study aimed to evaluate the effects of quercetin on CSRP and elucidated the underlying mechanism. METHODS: The cigarette smoke-related ligature-induced periodontitis mouse model was established by intraperitoneal injection of cigarette smoke extract (CSE) and silk ligation of bilateral maxillary second molars. Quercetin was adopted by gavage as a therapeutic strategy. Micro-computed tomography was used to evaluate the alveolar bone resorption. Immunohistochemistry detected the oxidative stress and autophagy markers in vivo. Cell viability was determined by Cell Counting Kit-8, and oxidative stress levels were tested by 2,7-dichlorodihydrofluorescein diacetate probe and lipid peroxidation malondialdehyde assay kit. Alkaline phosphatase and alizarin red staining were used to determine osteogenic differentiation. Network pharmacology analysis, molecular docking, and western blot were utilized to elucidate the underlying molecular mechanism. RESULTS: Alveolar bone resorption was exacerbated and oxidative stress products were accumulated during CSE exposure in vivo. Oxidative stress damage induced by CSE caused inhibition of osteogenic differentiation in vitro. Quercetin effectively protected the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and periodontal tissue by upregulating the expression of Beclin-1 thus to promote autophagy and reduce oxidative stress damage. CONCLUSION: Our results established a role of oxidative stress damage and autophagy dysfunction in the mechanism of CSE-induced destruction of periodontal tissue and hPDLCs, and provided a potential application value of quercetin to ameliorate CSRP.


Asunto(s)
Resorción Ósea , Fumar Cigarrillos , Periodontitis , Ratones , Animales , Humanos , Quercetina/farmacología , Quercetina/uso terapéutico , Osteogénesis , Fumar Cigarrillos/efectos adversos , Simulación del Acoplamiento Molecular , Microtomografía por Rayos X , Periodontitis/metabolismo , Diferenciación Celular , Autofagia , Células Cultivadas
12.
J Nanobiotechnology ; 21(1): 379, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37848975

RESUMEN

BACKGROUND: Brain-derived neurotrophic factor (BDNF) with neuronic development and function is a promising therapeutic agent for treating depressive disorder, according to the neurotrophin hypothesis. However, the delivery of BDNF into the brain is not easy as these large protein molecules cannot efficiently cross the blood-brain barrier (BBB) and easily suffer oxidative damage in vivo. Therefore, the quercetin-based alginate nanogels (quercetin nanogels) loaded with BDNF have been developed, which could efficiently bypass the BBB via the nose-to-brain pathway and protect BDNF from oxidative damage, providing an effective route for the therapy of depressive disorders by intranasal delivery. RESULTS: Quercetin nanogels exhibited uniform size distribution, excellent biocompatibility, and potent antioxidant and anti-inflammatory activities. Quercetin nanogels in the thermosensitive gel achieved sustained and controlled release of BDNF with non-Fick's diffusion, exhibited rapid brain distribution, and achieved nearly 50-fold enhanced bioavailability compared to oral quercetin. Quercetin nanogels as a therapeutic drug delivery carrier exerted antidepressant effects on reserpine-induced rats, effectively delivered BDNF to reverse despair behavior in stress-induced mice, and exhibited antidepressant effects on chronic mild unpredictable stimulation (CUMS) rats. These antidepressant effects of BDNF-Quercetin nanogels for CUMS rats are associated with the regulation of the glutamatergic system, PI3K-Akt, and BDNF-TrkB signaling pathway. CONCLUSIONS: In this study, we provide a promising strategy for brain delivery of BDNF for treating depressive disorders, effectively achieved through combining quercetin nanogels and intranasal administration.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Quercetina , Ratas , Ratones , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nanogeles , Alginatos , Fosfatidilinositol 3-Quinasas/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo , Modelos Animales de Enfermedad
13.
Molecules ; 28(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241888

RESUMEN

Quercetin (QtN) displays low systemic bioavailability caused by poor water solubility and instability. Consequently, it exerts limited anticancer action in vivo. One solution to increase the anticancer efficacy of QtN is the use of appropriate functionalized nanocarriers that preferentially target and deliver the drug to the tumor location. Herein, a direct advanced method was designed to develop water-soluble hyaluronic acid (HA)-QtN-conjugated silver nanoparticles (AgNPs). HA-QtN reduced silver nitrate (AgNO3) while acting as a stabilizing agent to produce AgNPs. Further, HA-QtN#AgNPs served as an anchor for folate/folic acid (FA) conjugated with polyethylene glycol (PEG). The resulting PEG-FA-HA-QtN#AgNPs (further abbreviated as PF/HA-QtN#AgNPs) were characterized both in vitro and ex vivo. Physical characterizations included UV-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), particle size (PS) and zeta potential (ZP) measurements, and biopharmaceutical evaluations. The biopharmaceutical evaluations included analyses of the cytotoxic effects on the HeLa and Caco-2 cancer cell lines using the MTT assay; cellular drug intake into cancer cells using flow cytometry and confocal microscopy; and blood compatibility using an automatic hematology analyzer, a diode array spectrophotometer, and an enzyme-linked immunosorbent assay (ELISA). The prepared hybrid delivery nanosystem was hemocompatible and more oncocytotoxic than the free, pure QtN. Therefore, PF/HA-QtN#AgNPs represent a smart nano-based drug delivery system (NDDS) and could be a promising oncotherapeutic option if the data are validated in vivo.


Asunto(s)
Productos Biológicos , Nanopartículas del Metal , Neoplasias , Humanos , Ácido Hialurónico/química , Quercetina/farmacología , Nanopartículas del Metal/química , Células CACO-2 , Plata , Polietilenglicoles/química , Agua , Espectroscopía Infrarroja por Transformada de Fourier
14.
AAPS PharmSciTech ; 24(6): 147, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380851

RESUMEN

The current research aims to develop and evaluate chitosan-PLGA biocomposite scaffolds in combination with quercetin liposomes to accomplish the desired impact in oral lesions where pharmacotherapeutic agent treatment through circulation could only reach the low content at the target. Optimization of quercetin-loaded liposomes was carried out using 32 factorial design. The preparation of porous scaffolds comprising produced quercetin-loaded liposomes by thin-film method was carried out in the current study using a unique strategy combining solvent casting and gas foaming procedures. The prepared scaffolds were tested for physicochemical properties, in vitro quercetin release study, ex vivo drug permeation and retention research using goat mucosa, antibacterial activity, and cell migration studies on fibroblast L929 cell lines. Improved cell growth and migration were seen in the order control < liposomes < proposed system. The proposed system has been examined for its biological and physicochemical features, and it has the potential to be utilized as an efficient therapy for oral lesions.


Asunto(s)
Quitosano , Animales , Liposomas , Quercetina/farmacología , Antibacterianos/farmacología , Línea Celular , Cabras
15.
Mol Med ; 28(1): 24, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193490

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial proliferation and bone destruction. Adenosine deaminase (ADA) is a key inflammatory enzyme that increases joint stiffness and pain in RA. In this study, we evaluated the in-silico, and in vivo inhibitory effect of quercetin isolated from Egyptian Fenugreek on ADA enzyme activity. We also determined the combinatorial effect of quercetin on methotrexate mediated anti-inflammatory efficacy and toxicity. In-silico molecular docking was conducted and confirmed in an in vivo RA rat model. The results showed that the inhibition constant of quercetin on joint ADA by docking and in-vitro was 61.9 and 55.5 mM, respectively. Therefore, quercetin exhibits anti-inflammatory effect in a rat RA model as evidenced by reducing the specific activity of ADA in joint tissues, lower jaw volume, enhance body weight, downregulate ADA gene expression, reduce levels of RA cytokines interleukin-1ß, interleukin-6, tumor necrosis factor-α, also, rheumatoid factor, C-reactive protein, and anti-cyclic citrullinated peptide RA biomarker levels. These findings demonstrate that the purified quercetin has a promising anti-inflammatory effect against RA disease through its inhibitory effects on the ADA enzyme. Furthermore, isolated quercetin improved the anti-inflammatory efficacy of methotrexate, reduced its toxic effects by increasing antioxidant enzymes and reducing oxidative stress.


Asunto(s)
Artritis Reumatoide , Quercetina , Adenosina Desaminasa , Animales , Artritis Reumatoide/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Quercetina/farmacología , Quercetina/uso terapéutico , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
16.
Toxicol Appl Pharmacol ; 437: 115889, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065992

RESUMEN

Quercetin (Que) exhibits excellent biological activity; however, its clinical development is hindered owing to the poor water solubility. In this study, Que. was loaded on polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PVCL-PVA-PEG, Soluplus) micelles through a thin-film hydration process, and their tumor angiogenesis inhibition ability was investigated. The particle size of Soluplus-Que micelles was 55.3 ± 1.8 nm, and the micelles stayed stability within 9 months. Soluplus-Que micelles can enhance the cell uptake of Que. and transport the micelles to intracellular lysosomes and mitochondria. The MTT assay results revealed that Soluplus-Que micelles enhanced the cytotoxicity of Que. on HUVEC cells. Furthermore, Soluplus-Que micelles inhibited migration and invasion of HUVEC cells, as well as inhibited the neovascularization of chick embryo allantoic membrane (CAM). The in vivo study revealed that Soluplus-Que micelles significantly inhibit the growth of H22 solid tumors, with low toxic side effects. Soluplus-Que inhibited the expression of CD31 (a marker of angiogenesis) and the PI3K/Akt/VEGF pathway in tumor tissues, indicating its potential to hold back tumor growth via the inhibition of angiogenesis. Our findings indicated that as a delivery system, Soluplus micelles demonstrate potential for the delivery of poorly soluble drugs for tumor treatment.


Asunto(s)
Micelas , Neovascularización Patológica/prevención & control , Fosfatidilinositol 3-Quinasas/metabolismo , Polietilenglicoles/química , Polímeros/química , Polivinilos/química , Quercetina/farmacología , Inhibidores de la Angiogénesis , Animales , Movimiento Celular/efectos de los fármacos , Embrión de Pollo , Sistemas de Liberación de Medicamentos/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/química , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Biomacromolecules ; 23(9): 3688-3697, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977087

RESUMEN

In this study, functional twin liposomes (TLs) were designed by linking avidin-anchored single liposomes and biotin-anchored single liposomes via avidin-biotin interactions. Here, we first punched a hole on the liposome surface using the liposome magnetoporation method to prepare functional single liposomes, which were used for safely encapsulating quercetin (QER, as a model prodrug) or laccase (LAC, as a bioactive enzyme) inside the liposomes without the use of organic solvents; the pores were then plugged by pH-sensitive glycol chitosan grafted with 3-diethylaminopropylamine (GDEAP) and avidin (or biotin). As a result, single liposomes with QER and biotin-GDEAP were efficiently coupled with other liposomes with LAC and avidin-GDEAP. We demonstrated that the TLs could accelerate QER and LAC release at acidic pH (6.8), improving the LAC-mediated oxidization of QER and significantly elevating tumor cell death, suggesting that this strategy can be used as an efficient method for the programmed action of prodrugs.


Asunto(s)
Avidina , Profármacos , Avidina/metabolismo , Biotina , Concentración de Iones de Hidrógeno , Lacasa , Liposomas , Profármacos/farmacología , Quercetina/farmacología
18.
Pharmacol Res ; 182: 106287, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671921

RESUMEN

Osteosarcoma (OS) is a malignant solid tumor prone to lung metastasis that occurs in adolescents aged 15-19 years. Neoadjuvant chemotherapy and surgical treatment aimed at curing OS have gained limited progress over the last 30 years. Exploring new effective second-line therapies for OS patients is a serious challenge for researchers. Quercetin, a multiple biologically active polyphenolic flavonoid, has been used in tumor therapy. However, the exact mechanism of quercetin is still unknown, which limits the application of quercetin. In the current study, we found that quercetin could inhibit JAK2 through the JH2 domain in a non-covalent manner, resulting in the inhibition of OS proliferation and immune escape via the JAK2-STAT3-PD-L1 signaling axis. More importantly, to overcome the shortcomings of quercetin, including low water solubility and low oral availability, we encapsulated it with folic acid-modified liposomes. The transportation of quercetin by folic acid-modified liposomes may provide a feasible strategy to cure OS.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Antígeno B7-H1/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular , Ácido Fólico , Humanos , Janus Quinasa 2/metabolismo , Liposomas/farmacología , Liposomas/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Factor de Transcripción STAT3/metabolismo
19.
Int J Hyperthermia ; 39(1): 162-172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35000534

RESUMEN

OBJECTIVE: This study aimed to investigate whether liposomal quercetin (LQ) could enhance the effects of microwave ablation (MVA) in treating the rabbit VX2 liver tumor model. METHODS: Rabbits with VX2 liver tumors were randomly divided into three groups: intravenous LQ group (LQ group), MWA group and LQ combined with MWA (LQ + MWA) group. Five rabbits were randomly selected and sacrificed from each group at 12 h and on days 3, 7 and 14 of the operation. The tumor samples were detected and quantified by immunohistochemistry, Western blot, and reverse transcription polymerase chain reaction (RT-PCR). RESULTS: For up to 7 days, the coagulation necrosis volume (CV) of the LQ + MWA group was larger than that of MWA and LQ groups (p < 0.05). Fourteen days after the operation, the total tumor volume of the LQ + MWA group was smaller than that of the LQ group and the MWA group (p < 0.05). The survival time of the LQ + MWA group was significantly longer than that of the MWA and LQ groups (p < 0.01). Heat shock protein 70 (HSP70), hypoxia inducible factor-1 α (HIF-1 α), vascular endothelial growth factor (VEGF), tumor microvessel density (MVD) were lower in the LQ + MWA group than the MWA and LQ groups at 12 h, on days 3 and 7. At hour 12 and on days 3 and 7, HSP70 mRNA and HIF-1α mRNA expression of MWA group were significantly higher than that of the LQ and LQ + MWA groups (p < 0.001). At 12 h, and on days 3 and 7, apoptotic rate of tumor cells in LQ + MWA group was higher than that of the MWA and LQ groups (p < 0.05). At 12 h and on days 3, 7 and 14, the proliferation index of tumor cells in residual tumor in LQ + MWA group was lower than that in the MWA and LQ groups (p < 0.05). CONCLUSION: Preoperative infusion of LQ can significantly enhance the MWA effects of liver VX2 tumor, inhibit the excessive proliferation of residual tumor and angiogenesis, and decrease metastasis and prolong the survival period of experimental animals.


Asunto(s)
Liposomas , Neoplasias Hepáticas , Animales , Conejos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Microondas/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
J Nanobiotechnology ; 20(1): 16, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983536

RESUMEN

BACKGROUND: The annual economic loss caused by plant viruses exceeds 10 billion dollars due to the lack of ideal control measures. Quercetin is a flavonol compound that exerts a control effect on plant virus diseases, but its poor solubility and stability limit the control efficiency. Fortunately, the development of nanopesticides has led to new ideas. RESULTS: In this study, 117 nm quercetin nanoliposomes with excellent stability were prepared from biomaterials, and few surfactants and stabilizers were added to optimize the formula. Nbhsp70er-1 and Nbhsp70c-A were found to be the target genes of quercetin, through abiotic and biotic stress, and the nanoliposomes improved the inhibitory effect at the gene and protein levels by 33.6 and 42%, respectively. Finally, the results of field experiment showed that the control efficiency was 38% higher than that of the conventional quercetin formulation and higher than those of other antiviral agents. CONCLUSION: This research innovatively reports the combination of biological antiviral agents and nanotechnology to control plant virus diseases, and it significantly improved the control efficiency and reduced the use of traditional chemical pesticides.


Asunto(s)
Liposomas , Nanopartículas , Enfermedades de las Plantas , Virus de Plantas/efectos de los fármacos , Quercetina , Agroquímicos/química , Agroquímicos/farmacología , Nanotecnología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Quercetina/química , Quercetina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA