Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563056

RESUMEN

Endocannabinoids act as analgesic agents in a number of headache models. However, their effectiveness varies with the route of administration and the type of pain. In this study, we assessed the role of the fatty acid amide hydrolase inhibitor URB597 in an animal model of orofacial pain based on tooth pulp stimulation. More specifically, we assessed the effects of intracerbroventricular (i.c.v.) and intraperitoneal (i.p.) administration of URB597 on the amplitude of evoked tongue jerks (ETJ) in rats. The levels of the investigated mediators anandamide (AEA), 2-arachidonyl glycerol (2-AG), Substance P (SP), calcitonin-gene-related peptide (CGRP), endomorphin-2 (EM-2) and fatty acid amide hydrolase (FAAH) inhibitor by URB597 and receptors cannabinoid type-1 receptors (CB1R), cannabinoid type-2 receptors (CB2R) and µ-opioid receptors (MOR) were determined in the mesencephalon, thalamus and hypothalamus tissues. We have shown that increasing endocannabinoid AEA levels by both central and peripheral inhibition of FAAH inhibitor by URB597 has an antinociceptive effect on the trigemino-hypoglossal reflex mediated by CB1R and influences the activation of the brain areas studied. On the other hand, URB597 had no effect on the concentration of 2-AG in the examined brain structures and caused a significant decrease in CB2R mRNA expression in the hypothalamus only. Tooth pulp stimulation caused in a significant increase in SP, CGRP and EM-2 gene expression in the midbrain, thalamus and hypothalamus. In contrast, URB597 administered peripherally one hour before stimulation decreased the mRNA level of these endogenous neuropeptides in comparison with the control and stimulation in all examined brain structures. Our results show that centrally and peripherally administered URB597 is effective at preventing orofacial pain by inhibiting AEA catabolism and reducing the level of CGRP, SP and EM-2 gene expression and that AEA and 2-AG have different species and model-specific regulatory mechanisms. The data presented in this study may represent a new promising therapeutic target in the treatment of orofacial pain.


Asunto(s)
Benzamidas , Péptido Relacionado con Gen de Calcitonina , Carbamatos , Percepción del Dolor , Amidohidrolasas/genética , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Carbamatos/farmacología , Carbamatos/uso terapéutico , Endocannabinoides/metabolismo , Dolor Facial/tratamiento farmacológico , Percepción del Dolor/efectos de los fármacos , Alcamidas Poliinsaturadas/metabolismo , ARN Mensajero , Ratas , Receptor Cannabinoide CB1/efectos de los fármacos , Receptores de Cannabinoides/efectos de los fármacos
2.
Physiol Res ; 68(5): 705-715, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31424251

RESUMEN

Orofacial pain disorders are frequent in the general population and their pharmacological treatment is difficult and controversial. Therefore, the search for novel, safe and efficient analgesics is an important but still elusive goal for contemporary medicine. In the recent years, the antinociceptive potential of endocannabinoids and opioids has been emphasized. However, concerns for the safety of their use limit their clinical applications. the possibility of modulating the activity of endocannabinoids by regulation of their synthesis and/or degradation offers an innovative approach to the treatment of pain. A rat model of trigeminal pain, utilizing tongue jerks evoked by electrical tooth pulp stimulation during perfusion of the cerebral ventricles with various neurotransmitter solutions can be used in the pharmacological studies of nociception in the orofacial area. The aim of this review is to present the effects of pharmacological activity of opioids and endocannabinoids affecting the transmission of the sensory information from the orofacial area on the example of trigemino-hypoglossal reflex in rats.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Endocannabinoides/uso terapéutico , Dolor Facial/tratamiento farmacológico , Umbral del Dolor/efectos de los fármacos , Receptores de Cannabinoides/efectos de los fármacos , Receptores Opioides/agonistas , Animales , Endocannabinoides/metabolismo , Dolor Facial/metabolismo , Dolor Facial/fisiopatología , Humanos , Péptidos Opioides/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores Opioides/metabolismo , Reflejo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
Exp Biol Med (Maywood) ; 231(8): 1421-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16946411

RESUMEN

It is known that marijuana use decreases saliva secretion. Therefore, we hypothesized that cannabinoid receptors (CBs) are located in salivary glands to mediate that effect. In these experiments, we used the submandibular gland (SMG) of male rats, which is one of the major salivary glands. Mammalian tissues contain at least two types of CBs, CB1 and CB2, mainly located in the nervous system and peripheral tissues, respectively. Both receptors are coupled to Gi protein and respond by inhibiting the activity of adenylyl cyclase. We demonstrated that both CB1 and CB2 are present in the SMG, each showing specific localizations. The best-known endocannabinoid is anandamide (AEA), which binds with high affinity to CB1 and CB2. We showed that AEA markedly reduced forskolin-induced increase of cAMP content in vitro. This effect was blocked by AM251 and AM630 (CB1 and CB2 antagonists, respectively), indicating that both receptors are implicated in SMG physiology. In addition, we showed that AEA injected intraglandularly to anesthetized rats inhibited norepinephrine (NE)- and methacholine (MC)-stimulated saliva secretion in vivo and that both AM251 or AM630 prevented the inhibitory action of AEA. Also, the intraglandular injection of AM251 increased saliva secretion induced by lower doses of NE or MC. This increase was synergized after coinjection with AM630. Therefore, we concluded that AEA decreases saliva secretion in the SMG acting through CB1 and CB2 receptors.


Asunto(s)
Ácidos Araquidónicos/administración & dosificación , Moduladores de Receptores de Cannabinoides/administración & dosificación , Receptores de Cannabinoides/efectos de los fármacos , Receptores de Cannabinoides/metabolismo , Saliva/metabolismo , Glándula Submandibular/metabolismo , Animales , Colforsina/farmacología , AMP Cíclico/metabolismo , Endocannabinoides , Inmunohistoquímica , Indoles/farmacología , Masculino , Cloruro de Metacolina/farmacología , Norepinefrina/farmacología , Parasimpaticomiméticos/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas , Pirazoles/farmacología , Ratas , Ratas Wistar , Saliva/efectos de los fármacos , Simpatomiméticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA