Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Am Chem Soc ; 144(7): 2968-2979, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35157798

RESUMEN

Coronavirus disease-2019 (COVID-19), a potentially lethal respiratory illness caused by the coronavirus SARS-CoV-2, emerged in the end of 2019 and has since spread aggressively across the globe. A thorough understanding of the molecular mechanisms of cellular infection by coronaviruses is therefore of utmost importance. A critical stage in infection is the fusion between viral and host membranes. Here, we present a detailed investigation of the role of selected SARS-CoV-2 Spike fusion peptides, and the influence of calcium and cholesterol, in this fusion process. Structural information from specular neutron reflectometry and small angle neutron scattering, complemented by dynamics information from quasi-elastic and spin-echo neutron spectroscopy, revealed strikingly different functions encoded in the Spike fusion domain. Calcium drives the N-terminal of the Spike fusion domain to fully cross the host plasma membrane. Removing calcium, however, reorients the peptide back to the lipid leaflet closest to the virus, leading to significant changes in lipid fluidity and rigidity. In conjunction with other regions of the fusion domain, which are also positioned to bridge and dehydrate viral and host membranes, the molecular events leading to cell entry by SARS-CoV-2 are proposed.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fragmentos de Péptidos/metabolismo , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Colesterol/química , Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Difracción de Neutrones , Dominios Proteicos , Dispersión del Ángulo Pequeño , Glicoproteína de la Espiga del Coronavirus/química , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
2.
J Am Chem Soc ; 144(4): 1498-1502, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34928591

RESUMEN

Several applications in health diagnostics, food, safety, and environmental monitoring require rapid, simple, selective, and quantitatively accurate viral load monitoring. Here, we introduce the first label-free biosensing method that rapidly detects and quantifies intact virus in human saliva with single-virion resolution. Using pseudotype SARS-CoV-2 as a representative target, we immobilize aptamers with the ability to differentiate active from inactive virions on a photonic crystal, where the virions are captured through affinity with the spike protein displayed on the outer surface. Once captured, the intrinsic scattering of the virions is amplified and detected through interferometric imaging. Our approach analyzes the motion trajectory of each captured virion, enabling highly selective recognition against nontarget virions, while providing a limit of detection of 1 × 103 copies/mL at room temperature. The approach offers an alternative to enzymatic amplification assays for point-of-collection diagnostics.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , ADN/química , Ácidos Nucleicos Inmovilizados/química , SARS-CoV-2/aislamiento & purificación , Técnicas Biosensibles/instrumentación , Humanos , Límite de Detección , Microscopía/métodos , Óptica y Fotónica/instrumentación , Óptica y Fotónica/métodos , SARS-CoV-2/química , Saliva/virología , Glicoproteína de la Espiga del Coronavirus/química
3.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209122

RESUMEN

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Asunto(s)
Antivirales/química , COVID-19/prevención & control , Materiales Biocompatibles Revestidos/química , Nanofibras/química , SARS-CoV-2/química , Animales , COVID-19/transmisión , Chlorocebus aethiops , Cobre/química , Oro/química , Humanos , Poliésteres/química , Titanio/química , Células Vero
4.
J Am Chem Soc ; 143(30): 11544-11553, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34288684

RESUMEN

Exponential molecular amplification such as the polymerase chain reaction is a powerful tool that allows ultrasensitive biodetection. Here, we report a new exponential amplification strategy based on photoredox autocatalysis, where eosin Y, a photocatalyst, amplifies itself by activating a nonfluorescent eosin Y derivative (EYH3-) under green light. The deactivated photocatalyst is stable and rapidly activated under low-intensity light, making the eosin Y amplification suitable for resource-limited settings. Through steady-state kinetic studies and reaction modeling, we found that EYH3- is either oxidized to eosin Y via one-electron oxidation by triplet eosin Y and subsequent 1e-/H+ transfer, or activated by singlet oxygen with the risk of degradation. By reducing the rate of the EYH3- degradation, we successfully improved EYH3--to-eosin Y recovery, achieving efficient autocatalytic eosin Y amplification. Additionally, to demonstrate its flexibility in output signals, we coupled the eosin Y amplification with photoinduced chromogenic polymerization, enabling sensitive visual detection of analytes. Finally, we applied the exponential amplification methods in developing bioassays for detection of biomarkers including SARS-CoV-2 nucleocapsid protein, an antigen used in the diagnosis of COVID-19.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/análisis , Eosina Amarillenta-(YS)/análogos & derivados , Espectrometría de Fluorescencia/métodos , 3,3'-Diaminobencidina/química , Biomarcadores/química , Catálisis/efectos de la radiación , Eosina Amarillenta-(YS)/síntesis química , Eosina Amarillenta-(YS)/efectos de la radiación , Fluorescencia , Luz , Límite de Detección , Oxidación-Reducción/efectos de la radiación , Fosfoproteínas/análisis , Polietilenglicoles/química , Polimerizacion , Prueba de Estudio Conceptual , SARS-CoV-2/química
5.
Clin Chem ; 67(5): 736-741, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33331864

RESUMEN

BACKGROUND: Reverse transcription-quantitative PCR on nasopharyngeal swabs is currently the reference COVID-19 diagnosis method but exhibits imperfect sensitivity. METHODS: We developed a multiplex reverse transcription-digital droplet PCR (RT-ddPCR) assay, targeting 6 SARS-CoV-2 genomic regions, and evaluated it on nasopharyngeal swabs and saliva samples collected from 130 COVID-19 positive or negative ambulatory individuals, who presented symptoms suggestive of mild or moderate SARS-CoV2 infection. RESULTS: For the nasopharyngeal swab samples, the results obtained using the 6-plex RT-ddPCR and RT-qPCR assays were all concordant. The 6-plex RT-ddPCR assay was more sensitive than RT-qPCR (85% versus 62%) on saliva samples from patients with positive nasopharyngeal swabs. CONCLUSION: Multiplex RT-ddPCR represents an alternative and complementary tool for the diagnosis of COVID-19, in particular to control RT-qPCR ambiguous results. It can also be applied to saliva for repetitive sampling and testing individuals for whom nasopharyngeal swabbing is not possible.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Nasofaringe/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Saliva/virología , COVID-19/sangre , Humanos , Límite de Detección , ARN Viral/sangre , Reproducibilidad de los Resultados , SARS-CoV-2/química , Manejo de Especímenes/instrumentación
6.
Clin Chem ; 67(2): 415-424, 2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33098427

RESUMEN

BACKGROUND: Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. METHODS: To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. RESULTS: The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44-104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. CONCLUSIONS: Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Saliva/virología , COVID-19/epidemiología , Colorimetría/métodos , Endopeptidasa K/química , Humanos , Límite de Detección , Pandemias , Pruebas en el Punto de Atención , SARS-CoV-2/química
7.
Arch Virol ; 166(9): 2487-2493, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231028

RESUMEN

The safety of personal protective equipment (PPE) is very important, and so is the choice of materials used. The ability of electrostatic charges (ESCs) generated from the friction of engineered materials to attract or repel viruses has a significant impact on their applications. This study examined the ESCs generated on the surface of PPE used by healthcare workers to enhance their potential effectiveness in protecting the wearer from viruses. This is a crucial consideration for the newly emerged severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which has a negative charge. The magnitudes and signs of generated ESCs on the surfaces of the PPE were determined experimentally using an Ultra Stable Surface DC Voltmeter. The high negative ESCs acquired by the polyethylene disposable cap and facemask are expected to repel negatively charged viruses and prevent them from adhering to the outer layer of the material. Also, the choice of polypropylene for facemasks and gowns is excellent because it is an aggressively negatively charged material in the triboelectric series. This property guarantees that facemasks and gowns can repel viruses from the wearer. However, the positive ESCs generated on latex glove surfaces are of great concern because they can attract negatively charged viruses and create a source of infection. In conclusion, it is necessary to ensure that PPE be made of materials whose surfaces develop a negative ESC to repel viruses, as well as to select polyethylene gloves.


Asunto(s)
COVID-19/prevención & control , Personal de Salud/educación , Equipo de Protección Personal/virología , SARS-CoV-2/química , COVID-19/transmisión , Cabello/química , Conocimientos, Actitudes y Práctica en Salud , Humanos , Látex/química , Ensayo de Materiales , Polietileno/química , Polipropilenos/química , Piel/química , Electricidad Estática
8.
Nanotechnology ; 32(48)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34375967

RESUMEN

Coronavirus disease 2019 (COVID-19) is today's most serious epidemic disease threatening the human race. The initial therapeutic approach of SARS-CoV-2 disease is based upon the binding the receptor-binding site of the spike protein to the host cell's ACE-2 receptor on the plasma membrane. In this study, it is aimed to develop a biocompatible and biodegradable polymeric drug delivery system that is targeted to the relevant receptor binding site and provides controlled drug release. Oseltamivir phosphate (OP) is an orally administered antiviral prodrug for primary therapy of the disease in biochemically activated carboxylate form (oseltamivir carboxylate OC). In the presented study, model drug OP loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) targeted with spike-binding peptide 1 (SBP1) of SARS-CoV-2 were designed to be used as an efficient and prolonged released antiviral drug delivery system. RY, EE, and DL values of the OP-loaded NPs produced by the solvent evaporation method were calculated to be 59.3%, 61.4%, and 26.9%, respectively. The particle size of OP-loaded NPs and OP-loaded NPs targeted with SBP1 peptide were 162.0 ± 11.0 and 226.9 ± 21.4 nm, respectively. While the zeta potential of the produced OP-loaded NPs was achieved negatively -23.9 ± 1.21 mV), the result of the modification with SBP1 peptide this value approached zero as -4.59 ± 0.728 mV. Morphological features of the OP-loaded NPs were evaluated using FEG-SEM. The further characterization and surface modification of the NPs were analyzed by FT-IR.In-vitrorelease studies of NPs showed that sustained release of OP occurred for two months that fitting the Higuchi kinetic model. By evaluating these outputs, it was reported that surface modification of OP-loaded NPs was significantly effective on characteristics such as size, zeta potential values, surface functionality, and release behavior. The therapeutic model drug-loaded polymeric formulation targeted with a specific peptide may serve as an alternative to more effective and controlled release pharmaceuticals in the treatment of COVID-19 upon an extensive investigation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas/química , Oseltamivir/química , Péptidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Oseltamivir/uso terapéutico
9.
Angew Chem Int Ed Engl ; 60(29): 15870-15878, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33860605

RESUMEN

Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 µg mL-1 (approx. 1.6 µm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 µg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.


Asunto(s)
Antivirales/metabolismo , Heparina/metabolismo , Poliéster Pentosan Sulfúrico/metabolismo , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Células A549 , Animales , Antivirales/química , Chlorocebus aethiops , Heparina/química , Humanos , Simulación de Dinámica Molecular , Poliéster Pentosan Sulfúrico/química , Polímeros/química , Polímeros/metabolismo , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química , Electricidad Estática , Células Vero
10.
ACS Sens ; 9(4): 1831-1841, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489767

RESUMEN

Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL-1) and affinity (dissociation constant (Kd): 6.48 × 10-12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.


Asunto(s)
Adenovirus Humanos , Epítopos , Humanos , Adenovirus Humanos/inmunología , Adenovirus Humanos/química , Epítopos/inmunología , Epítopos/química , Técnicas Biosensibles/métodos , Polímeros/química , Simulación de Dinámica Molecular , Polímeros Impresos Molecularmente/química , Impresión Molecular/métodos , Límite de Detección , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/química
11.
Biosens Bioelectron ; 239: 115623, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37643492

RESUMEN

Development of specific signal reporters with signal amplification effect are highly needed for sensitive and accurate detection of pathogen. Herein, we design a colorimetric immunosensing nanosystem based on liposome encapsulated quantum dots-sized MnO2 nanozyme (MnO2QDs@Lip) as a signal reporter for ultrasensitive and fast detection of SARS-CoV-2 antigen. The pathogenic antigens captured and separated by antibody-conjugated magnetic beads (MBs) are further connected with antibody-modified MnO2QDs@Lip to form a sandwich-like immunocomplex structure. After triggered release, MnO2 QDs efficiently catalyze colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB, which can be qualitatively observed by naked eyes and quantitatively analyzed by UV-Vis spectra or smartphone platforms. By taking advantages of immuno-magnetic separation, excellent peroxidase-like catalytic activity of MnO2 QDs, and high encapsulation efficiency of MnO2QDs@Lip, ultrasensitive detection of SARS-CoV-2 antigen ranging from 0.1 pg/mL to 100 ng/mL is achieved within 20 min. The limit of detection (LOD) is calculated to be 65 fg/mL in PBS buffer. Furthermore, real clinical samples of SARS-CoV-2 antigens can be effectively identified by this immunosensing nanosystem with excellent accuracy. This proposed detection nanosystem provides a strategy for simple, rapid and ultrasensitive detection of pathogens and may shed light on the development of new POCT detection platforms for early diagnosis of pathogens and surveillance in public health.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Inmunoensayo , SARS-CoV-2 , Colorimetría/métodos , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Liposomas/química , Antígenos Virales/análisis , Antígenos Virales/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Nanopartículas
12.
Int J Biol Macromol ; 183: 203-212, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33915212

RESUMEN

The world is currently facing a novel coronavirus (SARS-CoV-2) pandemic. The greatest threat that is disrupting the normal functioning of society is the exceptionally high species independent transmission. Drug repurposing is understood to be the best strategy to immediately deploy well-characterized agents against new pathogens. Several repurposable drugs are already in evaluation for determining suitability to treat COVID-19. One such promising compound includes heparin, which is widely used in reducing thrombotic events associated with COVID-19 induced pathology. As part of identifying target-specific antiviral compounds among FDA and world-approved libraries using high-throughput virtual screening (HTVS), we previously evaluated top hits for anti-SARS-CoV-2 activity. Here, we report results of highly efficacious viral entry blocking properties of heparin (IC50 = 12.3 nM) in the complete virus assay, and further, propose ways to use it as a potential transmission blocker. Exploring further, our in-silico analysis indicated that the heparin interacts with post-translational glycoconjugates present on spike proteins. The patterns of accessible spike-glycoconjugates in open and closed states are completely contrasted by one another. Heparin-binding to the open conformation of spike structurally supports the state and may aid ACE2 binding as reported with cell surface-bound heparan sulfate. We also studied spike protein mutant variants' heparin interactions for possible resistance. Based on available data and optimal absorption properties by the skin, heparin could potentially be used to block SARS-CoV-2 transmission. Studies should be designed to exploit its nanomolar antiviral activity to formulate heparin as topical or inhalation-based formulations, particularly on exposed areas and sites of primary viremia e.g. ACE2 rich epithelia of the eye (conjunctiva/lids), nasal cavity, and mouth.


Asunto(s)
Reposicionamiento de Medicamentos , Heparina/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/prevención & control , COVID-19/transmisión , Heparina/uso terapéutico , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tratamiento Farmacológico de COVID-19
13.
Carbohydr Polym ; 268: 118259, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34127229

RESUMEN

Nitrocellulose (NC) membrane can have value-added applications for lateral flow assay (LFA)-based diagnostic tools, which has great potential for the detection of pathogens, such as COVID-19, in different environments. However, poor sensitivity of the NC membrane based LFA limits its further application in many cases. Herein, we developed a facile method for LFA sensitivity enhancement, by incorporating two-sugar barrier into LFAs: one between the conjugation pad and the test line, and the other between the test line and the control line. ORF1ab nucleic acid of COVID-19 was used as the model target to demonstrate the concept on the HF120 membrane. Results show that at optimum conditions, the two sugar barrier LFAs have a detection limit of 0.5 nM, which is compared to that of 2.5 nM for the control LFA, achieving a 5-fold sensitivity increase. This low cost, easy-to-fabricate and easy-to-integrate LFA method may have potential applications in other cellulose paper-based platforms.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Colodión/química , ARN Mensajero/análisis , Azúcares/química , Proteínas Virales/genética , Prueba de Ácido Nucleico para COVID-19/instrumentación , ADN/química , Sondas de ADN/química , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Poliproteínas/genética , SARS-CoV-2/química , Sensibilidad y Especificidad
14.
ACS Appl Mater Interfaces ; 13(34): 40342-40353, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34412466

RESUMEN

Sensitive point-of-care methods for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in clinical specimens are urgently needed to achieve rapid screening of viral infection. We developed a magnetic quantum dot-based dual-mode lateral flow immunoassay (LFIA) biosensor for the high-sensitivity simultaneous detection of SARS-CoV-2 spike (S) and nucleocapsid protein (NP) antigens, which is beneficial for improving the detection accuracy and efficiency of SARS-CoV-2 infection in the point-of-care testing area. A high-performance magnetic quantum dot with a triple-QD shell (MagTQD) nanotag was first fabricated and integrated into the LFIA system to provide superior fluorescence signals, enrichment ability, and detectability for S/NP antigen testing. Two detection modes were provided by the proposed MagTQD-LFIA. The direct mode was used for rapid screening or urgent detection of suspected samples within 10 min, and the enrichment mode was used for the highly sensitive and quantitative analysis of SARS-CoV-2 antigens in biological samples without the interference of the "hook effect." The simultaneous detection of SARS-CoV-2 S/NP antigens was conducted in one LFIA strip, and the detection limits for two antigens under direct and enrichment modes were 1 and 0.5 pg/mL, respectively. The MagTQD-LFIA showed high accuracy, specificity, and stability in saliva and nasal swab samples and is an efficient tool with flexibility to meet the testing requirements for SARS-CoV-2 antigens in various situations.


Asunto(s)
Antígenos Virales/análisis , Técnicas Biosensibles/métodos , Proteínas de la Nucleocápside de Coronavirus/análisis , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/análisis , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales/inmunología , Antígenos Virales/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Fluorescencia , Colorantes Fluorescentes/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Nanopartículas de Magnetita/química , Nasofaringe/virología , Fosfoproteínas/análisis , Fosfoproteínas/inmunología , Puntos Cuánticos/química , Saliva/virología , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología
15.
ACS Appl Mater Interfaces ; 13(33): 38990-39002, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34379400

RESUMEN

The ongoing COVID-19 pandemic has clearly established how vital rapid, widely accessible diagnostic tests are in controlling infectious diseases and how difficult and slow it is to scale existing technologies. Here, we demonstrate the use of the rapid affinity pair identification via directed selection (RAPIDS) method to discover multiple affinity pairs for SARS-CoV-2 nucleocapsid protein (N-protein), a biomarker of COVID-19, from in vitro libraries in 10 weeks. The pair with the highest biomarker sensitivity was then integrated into a 10 min, vertical-flow cellulose paper test. Notably, the as-identified affinity proteins were compatible with a roll-to-roll printing process for large-scale manufacturing of tests. The test achieved 40 and 80 pM limits of detection in 1× phosphate-buffered saline (mock swab) and saliva matrices spiked with cell-culture-generated SARS-CoV-2 viruses and is also capable of detection of N-protein from characterized clinical swab samples. Hence, this work paves the way toward the mass production of cellulose paper-based assays which can address the shortages faced due to dependence on nitrocellulose and current manufacturing techniques. Further, the results reported herein indicate the promise of RAPIDS and engineered binder proteins for the timely and flexible development of clinically relevant diagnostic tests in response to emerging infectious diseases.


Asunto(s)
Antígenos Virales/análisis , Prueba Serológica para COVID-19/métodos , Proteínas de la Nucleocápside/análisis , SARS-CoV-2/química , Biomarcadores/análisis , Técnicas Biosensibles , COVID-19/prevención & control , Celulosa/química , Ensayo de Inmunoadsorción Enzimática/métodos , Colorantes Fluorescentes/química , Humanos , Técnicas Analíticas Microfluídicas/métodos , Biblioteca de Péptidos , Unión Proteica
16.
Anal Methods ; 13(7): 874-883, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33576354

RESUMEN

Using the children's toy, Shrinky-Dink©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 1 ag mL-1 of the S1 subunit of the spike protein.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Poliestirenos/química , SARS-CoV-2/química , Saliva/química , Glicoproteína de la Espiga del Coronavirus/análisis , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/instrumentación , Electrodos , Oro/química , Humanos , Límite de Detección , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química
17.
Nat Struct Mol Biol ; 28(7): 573-582, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34158638

RESUMEN

SARS-CoV-2 ORF3a is a putative viral ion channel implicated in autophagy inhibition, inflammasome activation and apoptosis. 3a protein and anti-3a antibodies are found in infected patient tissues and plasma. Deletion of 3a in SARS-CoV-1 reduces viral titer and morbidity in mice, suggesting it could be an effective target for vaccines or therapeutics. Here, we present structures of SARS-CoV-2 3a determined by cryo-EM to 2.1-Å resolution. 3a adopts a new fold with a polar cavity that opens to the cytosol and membrane through separate water- and lipid-filled openings. Hydrophilic grooves along outer helices could form ion-conduction paths. Using electrophysiology and fluorescent ion imaging of 3a-reconstituted liposomes, we observe Ca2+-permeable, nonselective cation channel activity, identify mutations that alter ion permeability and discover polycationic inhibitors of 3a activity. 3a-like proteins are found across coronavirus lineages that infect bats and humans, suggesting that 3a-targeted approaches could treat COVID-19 and other coronavirus diseases.


Asunto(s)
Microscopía por Crioelectrón , Nanoestructuras , SARS-CoV-2 , Proteínas Viroporinas/química , Proteínas Viroporinas/ultraestructura , Animales , Calcio/metabolismo , Quirópteros/virología , Coronaviridae , Electrofisiología , Fluorescencia , Humanos , Transporte Iónico , Liposomas , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Sistemas de Lectura Abierta , Imagen Óptica , Reproducibilidad de los Resultados , SARS-CoV-2/química , SARS-CoV-2/ultraestructura , Homología de Secuencia , Proteínas Virales/química , Proteínas Virales/ultraestructura , Proteínas Viroporinas/antagonistas & inhibidores
18.
ACS Appl Mater Interfaces ; 13(35): 41445-41453, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428374

RESUMEN

Airborne transmission of exhaled virus can rapidly spread, thereby increasing disease progression from local incidents to pandemics. Due to the COVID-19 pandemic, states and local governments have enforced the use of protective masks in public and work areas to minimize the disease spread. Here, we have leveraged the function of protective face coverings toward COVID-19 diagnosis. We developed a user-friendly, affordable, and wearable collector. This noninvasive platform is integrated into protective masks toward collecting airborne virus in the exhaled breath over the wearing period. A viral sample was sprayed into the collector to model airborne dispersion, and then the enriched pathogen was extracted from the collector for further analytical evaluation. To validate this design, qualitative colorimetric loop-mediated isothermal amplification, quantitative reverse transcription polymerase chain reaction, and antibody-based dot blot assays were performed to detect the presence of SARS-CoV-2. We envision that this platform will facilitate sampling of current SARS-CoV-2 and is potentially broadly applicable to other airborne diseases for future emerging pandemics.


Asunto(s)
Pruebas Respiratorias/instrumentación , Prueba de COVID-19/instrumentación , Máscaras , SARS-CoV-2/aislamiento & purificación , Microbiología del Aire , Anticuerpos Antivirales/inmunología , Pruebas Respiratorias/métodos , Prueba de COVID-19/métodos , Colodión/química , Colorimetría/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Cemento de Policarboxilato/química , Porosidad , Prueba de Estudio Conceptual , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/química , Proteínas Virales/análisis , Proteínas Virales/inmunología
19.
Adv Mater ; 33(51): e2104362, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34651342

RESUMEN

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum are found unable to elicit neutralizing responses following a prime-boost immunization. Here, it has been shown that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Hidrogeles/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos/química , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/virología , Islas de CpG/genética , Femenino , Humanos , Inmunidad Humoral , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Polímeros/química , Dominios Proteicos/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación , Vacunas de Subunidad/química , Vacunas de Subunidad/metabolismo
20.
Biointerphases ; 16(1): 011006, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33706521

RESUMEN

The novel coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached more than 160 countries and has been declared a pandemic. SARS-CoV-2 infects host cells by binding to the angiotensin-converting enzyme 2 (ACE-2) surface receptor via the spike (S) receptor-binding protein (RBD) on the virus envelope. Global data on a similar infectious disease spread by SARS-CoV-1 in 2002 indicated improved stability of the virus at lower temperatures facilitating its high transmission in the community during colder months (December-February). Seasonal viral transmissions are strongly modulated by temperatures, which can impact viral trafficking into host cells; however, an experimental study of temperature-dependent activity of SARS-CoV-2 is still lacking. We mimicked SARS-CoV-2 with polymer beads coated with the SARS-CoV-2 S protein to study the effect of seasonal temperatures on the binding of virus-mimicking nanospheres to lung epithelia. The presence of the S protein RBD on nanosphere surfaces led to binding by Calu-3 airway epithelial cells via the ACE-2 receptor. Calu-3 and control fibroblast cells with S-RBD-coated nanospheres were incubated at 33 and 37 °C to mimic temperature fluctuations in the host respiratory tract, and we found no temperature dependence in contrast to nonspecific binding of bovine serum ablumin-coated nanospheres. Moreover, the ambient temperature changes from 4 to 40 °C had no effect on S-RBD-ACE-2 ligand-receptor binding and minimal effect on the S-RBD protein structure (up to 40 °C), though protein denaturing occurred at 51 °C. Our results suggest that ambient temperatures from 4 to 40 °C have little effect on the SARS-CoV-2-ACE-2 interaction in agreement with the infection data currently reported.


Asunto(s)
COVID-19/metabolismo , Materiales Biocompatibles Revestidos , Células Epiteliales/metabolismo , Pulmón/metabolismo , Nanosferas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Temperatura , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Pulmón/patología , Pulmón/virología , Ratones , Células 3T3 NIH , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA