Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Fish Shellfish Immunol ; 132: 108477, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36494033

RESUMEN

Marine organisms are threatened by various environmental contaminants, and nanoplastics (NPs) is one of the most concerned. Studied have shown that NPs has a certain impact on marine organisms, but the specific molecular mechanism is still unclear. At present, researches on the effect of NPs on marine life mostly focus on crustaceans, gastropods, and bivalves. In this study, cephalopod Sepia esculenta larvae were first used to investigate the potential immune response molecular mechanisms caused by PS-NPs (50 nm, 50 mg/L) short-term exposure (4 and 24 h). Through S. esculenta larvae transcriptome profile of gene expression analysis, 548 and 1990 genes showed differential expression at 4 and 24 h after NPs exposure, respectively. GO and KEGG enrichment analysis were performed to find immune related DEGs. Then, the interaction relationship between the immune related DEGs after NPs exposure was known through the constructed protein-protein interaction network. 20 hub genes were found on the base of KEGG pathway numbers involved and protein-protein interaction numbers. This research supply valuable genes for the study of cephalopod immune response caused by NPs, which can help us further uncover the molecular mechanisms of organism against NPs.


Asunto(s)
Sepia , Contaminantes Químicos del Agua , Animales , Larva/metabolismo , Sepia/genética , Sepia/metabolismo , Microplásticos , Transcriptoma , Perfilación de la Expresión Génica , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
2.
Biomacromolecules ; 18(12): 4084-4098, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29032671

RESUMEN

Melanins are ubiquitous in nature but their biological activities and functions have been difficult to discern. Conventional approaches to determine material function start by resolving structure and then characterize relevant properties. These approaches have been less successful for melanins because of their complex structure and insolubility, and because their relevant properties are not readily characterized by conventional methods. Here, we report a novel spectroelectrochemical reverse engineering approach that focuses on redox and radical scavenging activities. In this method, the melanin is immobilized in a permeable hydrogel film adjacent to an electrode and this immobilized melanin is probed using diffusible mediators and complex electrical inputs. Response characteristics are measured using two modalities, electrochemical currents associated with the reaction of diffusible mediators, and optical absorbance associated with the presence of diffusible free radicals. Using this method, we observed that both Sepia and fungal melanins are redox active and can repeatedly exchange electrons to be switched between oxidized and reduced states. Further, we observed that these melanins can quench radicals either by donating or accepting electrons. Finally, we demonstrate that the melanins' radical scavenging activities are dependent on their redox state such that a melanin must be reduced to have donatable electrons to quench oxidative free radicals, or must be oxidized to accept electrons from reductive free radicals. While the observation that melanin is redox-active is consistent with their well-accepted beneficial (radical-scavenging) and detrimental (pro-oxidant) activities, these observations may also support less well-accepted proposed functions for melanin in energy harvesting and redox communication.


Asunto(s)
Radicales Libres/química , Melaninas/química , Especies Reactivas de Oxígeno/química , Análisis Espectral/métodos , Animales , Hongos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Oxidación-Reducción , Sepia
3.
Biomacromolecules ; 18(6): 1908-1917, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28510430

RESUMEN

Natural melanins are biocompatible conductors with versatile functionalities. Here, we report fabrication of multifunctional poly(vinyl alcohol)/melanin nanocomposites by layer-by-layer (LBL) assembly using melanin nanoparticles (MNPs) directly extracted from sepia officinalis inks. The LBL assembly offers facile manipulation of nanotextures as well as nm-thickness control of the macroscale film by varying solvent qualities. The time-resolved absorption was monitored during the process and quantitatively studied by fractal dimension and lacunarity analysis. The capability of nanoarchitecturing provides confirmation of complete monolayer formation and leads to tunable iridescent reflective colors of the MNP films. In addition, the MNP films have durable electrochemical conductivities as evidenced by enhanced charge storage capacities for 1000 cycles. Moreover, the MNP covered ITO (indium tin oxide) substrates significantly reduced secretion of inflammatory cytokines, TNF-α, by raw 264.7 macrophage cells compared to bare ITO, by a factor of 5 and 1.8 with and without lipopolysaccharide endotoxins, respectively. These results highlight the optoelectronic device-level tunability along with the anti-inflammatory biocompatibility of the MNP LBL film. This combination of performance should make these films particularly interesting for bioelectronic device applications such as electroceuticals, artificial bionic organs, biosensors, and implantable devices.


Asunto(s)
Antiinflamatorios/química , Materiales Biocompatibles/química , Técnicas Biosensibles/instrumentación , Melaninas/química , Nanocompuestos/química , Nanosferas/química , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Materiales Biocompatibles/aislamiento & purificación , Materiales Biocompatibles/farmacología , Técnicas Biosensibles/métodos , Conductividad Eléctrica , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Melaninas/aislamiento & purificación , Melaninas/farmacología , Ratones , Nanocompuestos/ultraestructura , Nanosferas/ultraestructura , Alcohol Polivinílico/química , Células RAW 264.7 , Sepia/química , Compuestos de Estaño/química , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 18(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718807

RESUMEN

The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.


Asunto(s)
Tecnología Biomédica , Biomimética , Biotecnología , Bivalvos/química , Melaninas/metabolismo , Polímeros/metabolismo , Sepia/química , Animales , Melaninas/química
5.
J Biol Chem ; 287(6): 3630-41, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22117076

RESUMEN

Despite its central role in signaling and the potential therapeutic applications of inverse agonists, the molecular mechanisms underlying G protein-coupled receptor (GPCR) constitutive activity remain largely to be explored. In this context, ghrelin receptor GHS-R1a is a peculiar receptor in the sense that it displays a strikingly high, physiologically relevant, constitutive activity. To identify the molecular mechanisms responsible for this high constitutive activity, we have reconstituted a purified GHS-R1a monomer in a lipid disc. Using this reconstituted system, we show that the isolated ghrelin receptor per se activates G(q) in the absence of agonist, as assessed through guanosine 5'-O-(thiotriphosphate) binding experiments. The measured constitutive activity is similar in its extent to that observed in heterologous systems and in vivo. This is the first direct evidence for the high constitutive activity of the ghrelin receptor being an intrinsic property of the protein rather than the result of influence of its cellular environment. Moreover, we show that the isolated receptor in lipid discs recruits arrestin-2 in an agonist-dependent manner, whereas it interacts with µ-AP2 in the absence of ligand or in the presence of ghrelin. Of importance, these differences are linked to ligand-specific GHS-R1a conformations, as assessed by intrinsic fluorescence measurements. The distinct ligand requirements for the interaction of purified GHS-R1a with arrestin and AP2 provide a new rationale to the differences in basal and agonist-induced internalization observed in cells.


Asunto(s)
Lípidos/química , Membranas Artificiales , Receptores de Ghrelina/química , Animales , Arrestinas/química , Arrestinas/genética , Arrestinas/metabolismo , Activación Enzimática , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estructura Terciaria de Proteína , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Sepia
6.
Aquat Toxicol ; 258: 106478, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905919

RESUMEN

With extensive use of plastic products, microplastics (MPs, < 5 mm) and nanoplastics (NPs, < 1 µm) have become major pollutants in ecosystem, especially in marine environment. In recent years, researches on the impact of NPs on organisms have gradually increased. However, studies on the influence of NPs on cephalopods are still limited. Golden cuttlefish (Sepia esculenta), an important economic cephalopod, is a shallow marine benthic organism. In this study, the effect of acute exposure (4 h) to 50-nm polystyrene nanoplastics (PS-NPs, 100 µg/L) on the immune response of S. esculenta larvae was analyzed via transcriptome data. A total of 1260 DEGs were obtained in the gene expression analysis. The analyses of GO, KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network were then performed to explore the potential molecular mechanisms of the immune response. Finally, 16 key immune-related DEGs were obtained according to the number of KEGG signaling pathways involved and the PPI number. This study not only confirmed that NPs had an impact on cephalopod immune response, but also provided novel insights for further unmasking the toxicological mechanisms of NPs.


Asunto(s)
Sepia , Contaminantes Químicos del Agua , Animales , Poliestirenos , Sepia/genética , Plásticos , Larva , Microplásticos , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos
7.
Mar Pollut Bull ; 160: 111553, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32810671

RESUMEN

Amongst cephalopods microplastics have been reported only in jumbo squid gut. We investigated microplastics in the digestive system of wild cuttlefish (Sepia officinalis) as they are predators and prey and compared the stomach, caecum/intestine and digestive gland (DG) of wild and cultured animals, exposed to seawater from a comparable source. Fibers were the most common type (≈90% of total count) but were ≈2× higher in relation to body weight in wild vs. cultured animals. Fibers were transported to the DG where the count was ≈2× higher /g in wild (median 1.85 fibers/g) vs. cultured. In wild-caught animals the DG was the predominant location but in cultured animals the fibers were more evenly distributed in the digestive tract. The potential impact of microplastics on health of cuttlefish is discussed. Cuttlefish represent a previously unrecognized source of microplastic trophic transfer to fish and finding fibers in cultured animals has implications for aquaculture.


Asunto(s)
Sepia , Animales , Decapodiformes , Microplásticos , Plásticos , Agua de Mar
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 23(4): 887-90, 2006 Aug.
Artículo en Zh | MEDLINE | ID: mdl-17002131

RESUMEN

The cuttlebones, harvested from cuttles, undergo the chemical reaction in high temperature and high pressure for a certain time. The products are qualitatively analysed, and spacial structure observation and cytocompatibility are tested. The results show that the chemical component of the cuttlebone is CaCO3 and the crystal type is aragonite. Cuttlebones undergo a hydro-thermal reaction, and thus transform into hydroxyapatite-that is, the cuttlebone-transformed hydroxyapatite(CBHA). The CBHA materials have the interconnected microporous network structures. Under the high magnification, CBHAs appear to have many micro-spheres, thus construct a new self-assembled nano-material system. The marrow stromal osteoblasts can adhere to and proliferate well on the surface of the CBHAs. These results show that CBHAs have good biocompatibility. Therefore, it can be a potential candidate scaffold for bone tissue engineering.


Asunto(s)
Sustitutos de Huesos/síntesis química , Durapatita/síntesis química , Osteoblastos/efectos de los fármacos , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/toxicidad , Células Cultivadas , Durapatita/química , Durapatita/toxicidad , Ensayo de Materiales , Osteoblastos/citología , Conejos , Sepia/anatomía & histología , Columna Vertebral/anatomía & histología , Columna Vertebral/química , Ingeniería de Tejidos
9.
Carbohydr Polym ; 148: 1-10, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27185109

RESUMEN

Novel composite hydrogels based on pineapple peel cellulose and sepia ink were synthesized by homogeneous acetylation of cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride. The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscope, X-ray diffraction, thermogravimetry and differential scanning calorimetry. The effects of acetylation time, acetylation temperature, molar ratio of acetic anhydride/anhydroglucose unit and the additive amount of sepia ink on methylene blue adsorption capacity of the hydrogels embedded with sepia ink were also investigated. Methylene blue adsorption of the hydrogels followed pseudo-second-order kinetic model and sepia ink improved adsorption capacity significantly. The adsorption capacity at equilibrium was increased from 53.72 to 138.25mg/g when the additive amount of sepia ink of the hydrogels was 10%.


Asunto(s)
Ananas/química , Celulosa/química , Hidrogeles/química , Tinta , Azul de Metileno/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Animales , Frutas/química , Cinética , Azul de Metileno/química , Sepia/química , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/normas
10.
J Morphol ; 272(10): 1245-58, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21688295

RESUMEN

Adhesion in cephalopods is either mechanical, involving a reduced-pressure system of the arm and tentacle suckers, or is chemically mediated by special adhesive gland structures (as proposed for Euprymna, Idiosepius, and Nautilus). Four species of Sepia (S. typica, S. papillata, S. pulchra, and S. tuberculata) possess grooved structures on the ventral mantle surface and on the fourth arm pair, which are used to attach mechanically to the substratum. Because these areas are often partly covered with sand or debris, it has been hypothesized that chemical substances were involved in this attachment process. This study provides a histochemical and ultrastructural description of the glandular epithelium in the adhesive area of Sepia tuberculata. Two specific glandular cells (Type 1 and Type 2) are present in the epithelium, which differ clearly in their granule size and cellular structure. The aggregation of both cell types and their simultaneous secretion suggest that the secretions of both cell types work synergistically providing a two-component adhesive system which supports the primarily mechanical sucker adhesion by making the arm surface sticky.


Asunto(s)
Células Epiteliales/citología , Epitelio/anatomía & histología , Sepia/anatomía & histología , Piel/anatomía & histología , Adhesividad , Animales , Carbohidratos/análisis , Células Epiteliales/metabolismo , Epitelio/fisiología , Sepia/fisiología , Piel/citología , Adhesivos Tisulares/química
12.
J Biomater Sci Polym Ed ; 21(1): 113-25, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20040157

RESUMEN

To promote osteointegration, bioactive cuttlebone particles containing collagen were used to fill an acrylic cement, varying filler concentration (0-50 wt%). Cuttlebone was characterized by X-ray diffraction, plasma atomic emission and FT-IR. Mechanical properties of the filled cement were determined following ASTM procedures, included stress-strain, compression, bending, and fracture toughness tests. For in vivo tests, three groups of seven adult healthy rabbits were prepared to make an implant in the parietal bone of each one. For such groups (I-III), the amount of filler in the cement was 0, 10 and 30 wt%, respectively. Mechanical results for the composites complied with norm requirements. However, as mechanical performance for composite with 50 wt% of filler decreased significantly, for the in vivo tests, such composite was excluded. In vivo tests showed that three implants of group I were loosely attached to the parietal bone, whereas all the implants made with cement containing cuttlebone particles (groups II and III) were firmly attached to the parietal bone, indicating osteointegration. These results clearly show the potential of this type of bioactive filler to be used for medical applications.


Asunto(s)
Huesos/química , Implantes Experimentales , Polimetil Metacrilato/química , Sepia/química , Animales , Colágeno/química , Fuerza Compresiva , Módulo de Elasticidad , Ensayo de Materiales , Conejos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA