Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 169: 105651, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35750135

RESUMEN

The sea urchin Strongylocentrotus intermedius, famous for its gonadal quality, is one of the most important farmed species in the sea area of northern China. Since 2020, outbreaks of black peristomial membrane disease (commonly called black mouth disease) have frequently occurred in spring and winter in cultured S. intermedius. In this study, we isolated the predominant bacteria from different tissues of diseased sea urchins from a North China farm in the spring of 2021. Four pathogenic strains (named SIBMPM01, SIBMPM02, SIBMPM03 and SIBMCF01) were obtained and characterized by Gram staining, morphological observation, artificial infection tests, and metabolic characteristics. Our results showed that: 1) all obtained strains belonged to the genus Vibrio and had morphological differences. Phylogenetic analysis indicated that the four obtained strains might be novel Vibrio species. 2) Laboratory-based artificial infection tests showed that sea urchins infected with either SIBMPM01, SIBMPM02, SIBMPM03 or SIBMCF01 exhibited pathological symptoms of a black peristomial membrane in a dosage-dependent and temperature-dependent manner. The virulence of SIBMCF01 was greater than those of the others. 3) Metabolic characterization data showed that SIBMPM01, SIBMPM02, SIBMPM03 and SIBMCF01 shared similar metabolic characteristics. 4) Antimicrobial susceptibility tests demonstrated that the four obtained strains were all sensitive to ampicillin, doxycycline, norfloxacin, ofloxacin, furazolidone and chloramphenicol. SIBMPM01 was specifically sensitive to neomycin, and SIBMCF01 was specifically sensitive to carboxybenzyl penicillin.


Asunto(s)
Strongylocentrotus , Vibrio , Animales , Granjas , Filogenia , Strongylocentrotus/genética , Strongylocentrotus/metabolismo , Temperatura , Vibrio/genética
2.
Sci Total Environ ; 869: 161576, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640870

RESUMEN

Nanoplastics (NPs) are abundant and widespread throughout the ocean, not only causing severe environmental pollution, but also worsening the aquatic organisms. To elucidate the mechanism of biological toxic effects underlying the responses of marine invertebrates to NPs, Strongylocentrotus intermedius was stressed with three different NPs concentrations (0 particles/L, 102 particles/L and 104 particles/L). Specific growth rates, enzyme activity, gut tissue section observation and structural characteristics of the gut bacterial community were analyzed. After 28 days of exposure, the specific growth rate of S. intermedius decreased significantly with NPs groups. Further, both lysozyme, pepsin, lipase and amylase activities decreased, while the superoxide dismutase activity increased, indicating that NPs negatively affected digestive enzyme and immune enzyme activity. The analysis of gut tissue sections revealed that NPs caused atrophy and cytoplasmic reduction in the epithelial cells of the S. intermedius intestine. Moreover, the structural characterization of the gut bacterial community indicated significant changes in the abundances of members from Campylobacterota, Chlamydiae, and Firmicutes. Members from Arcobacteraceae, Christensenellaceae and Clostridia were endemic to the NPs treatment. The KEGG database analysis demonstrated that the metabolic pathways specific to the NPs treatment group were significantly associated with growth, energy metabolism, and immunity. In summary, NPs have negatively affected on physiological response and altered gut microecological environment.


Asunto(s)
Strongylocentrotus , Animales , Strongylocentrotus/metabolismo , Microplásticos/metabolismo , Erizos de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA