Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Periodontal Res ; 59(4): 758-770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699835

ABSTRACT

BACKGROUND AND OBJECTIVE: Osteoporosis is associated with bone microarchitecture alterations, and the depletion of estrogen during menopause is a major contributing factor to its development. The literature highlights the noteworthy role of gut microbiota in bone metabolism, particularly in the progression of osteoporosis. Periodontal disease leads to alveolar bone loss, which may be influenced by estrogen deficiency, and this mechanism is intricately associated with an imbalance in systemic microbiota. The aim of this study was to evaluate the effects of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019) and Lacticaseibacillus casei 01 (L. casei 01) administrations on an osteoporosis animal model. MATERIALS AND METHODS: Thirty-three female rats were randomly divided into three groups: control (C-OVX), C-OVX-HN019 and C-OVX-LC01. All animals were ovariectomized. In groups C-OVX-HN019 and C-OVX-LC01, the probiotics were administered for 4 months. All animals were euthanized after 16 weeks from ovariectomy. Microtomographic, histopathological and immunohistochemical examinations were conducted on periodontal tissues, whereas histomorphometry, histopathological and immunohistochemical analyses were carried out on the intestine. The levels of estradiol were assessed in blood using an immunoenzymatic assay. The data were subjected to statistical analyses (p < .05). RESULTS: The C-OVX-LC01 group exhibited a significant reduction in alveolar bone porosity and an increase in connective tissue density compared to C-OVX (p < .05). The C-OVX-HN019 and C-OVX-LC01 groups presented reduced expression of TRAP and RANKL compared to the C-OVX (p < .05). The C-OVX group presented villi defects, mild neutrophil infiltration, decrease in both villous height and intestinal crypts and reduced expression of intestinal junctional epithelium markers e-cadherin and claudin 01 compared to C-OVX-HN019 and C-OVX-LC01 (p < .05). The C-OVX group had lower estradiol levels than C-OVX-HN019 and C-OVX-LC01 (p < .05). CONCLUSION: The probiotic therapy promoted a reduction in alveolar bone destruction and intestinal permeability as well as an increase in estradiol levels in ovariectomized rats. Specifically, the probiotic strain Lacticaseibacillus casei 01 exhibited greater effectiveness compared to Bifidobacterium animalis subsp. lactis HN019, indicating strain-dependent outcomes.


Subject(s)
Estradiol , Osteoporosis , Ovariectomy , Probiotics , Animals , Estradiol/blood , Probiotics/therapeutic use , Probiotics/pharmacology , Female , Rats , Osteoporosis/pathology , Alveolar Bone Loss/pathology , Alveolar Bone Loss/prevention & control , Disease Models, Animal , Lacticaseibacillus casei , Bifidobacterium animalis , X-Ray Microtomography , Alveolar Process/pathology , Intestines/pathology , Intestines/microbiology , Gastrointestinal Microbiome , Rats, Wistar
2.
Int Endod J ; 54(7): 1175-1188, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33577106

ABSTRACT

AIM: To evaluate possible modifications in root canal sealers subjected to a variety of heating conditions using vibrational spectroscopy and analysis of physical and chemical properties. METHODOLOGY: EndoSequence BC Sealer HiFlow, Bio-C Sealer, BioRoot RCS and AH Plus were analysed chemically using Raman spectroscopy (25-220 °C) and Fourier-transform infrared spectroscopy (FT-IR) (37-100 °C ). For FT-IR, the materials were tested individually and mixed with root dentine powder. Scanning electron microscopy (SEM) and coupled energy dispersive spectroscopy (EDS) were used to evaluate surface and chemical elements. ISO 6876-2012 and ASTM-C266-07 specifications were followed to evaluate flow, setting time (moist and dry), solubility and radiopacity. Also, pH analysis at 37 and 100 °C was performed. Shapiro-Wilk and Mixed ANOVA (within and between the effects of the subjects), Levene, and a post hoc analyses with Bonferroni correction were performed (P < 0.05). RESULTS: Vibrational spectroscopy revealed peaks of tricalcium silicate, dicalcium silicate and zirconium dioxide. Chemical changes in the Raman spectra during heating were discrete, as the inorganic content predominated the signalling for all root canal sealers. FT-IR analysis exhibited spectral changes in water absorption for EndoSequence BC Sealer HiFlow and Bio-C Sealer, probably related to dehydration. For BioRoot RCS and AH Plus, no significant chemical changes were observed. Bio-C Sealer exhibited a band of polyethylene glycol only after heating to 100 °C, probably related to its thermal decomposition. SEM/EDS analysis corroborated the composition results observed in vibrational spectroscopy for all materials. Heating to 100 °C significantly changed the flowability of all calcium silicate-based sealers with a wide variation in setting times at both temperatures, along with solubility levels above ISO standards. For all tested sealers, radiopacity fulfilled the requirements, and pH exhibited alkaline values. CONCLUSIONS: The tested calcium silicate-based sealers were affected by heating. Calcium silicate-based root canal sealers had high solubility which is a concern for their clinical use. AH Plus was the only root canal sealer that was stable after heating.


Subject(s)
Heating , Root Canal Filling Materials , Calcium Compounds , Epoxy Resins , Humans , Materials Testing , Silicates , Spectroscopy, Fourier Transform Infrared
3.
Sci Rep ; 13(1): 9738, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322106

ABSTRACT

Calcium silicate-based materials are used to block the communication between the root canal and the periodontal ligament space. This brings the materials into contact with tissues and the potential for local and systemic elemental release and movement. The aim of the study was to evaluate the elemental release of bismuth from ProRoot MTA in contact with connective tissues after 30 and 180 days as well as any accumulation in peripheral organs using an animal model. Tricalcium silicate and hydroxyapatite containing 20% bismuth oxide (HAp-Bi) were used as controls. The null hypothesis was that bismuth migrates from tricalcium silicate-based materials when associated with silicon. The materials were examined using scanning electron microscopy, energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction prior to implantation as well as using SEM/EDS, micro X-ray fluorescence and Raman spectroscopy after implantation to assess elemental presence in surrounding tissues. Histological analysis was used to evaluate the changes in tissue architecture and inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the elemental deposition. For the systemic investigation, routine blood analysis was performed and organs were obtained to evaluate the presence of bismuth and silicon using ICP-MS after acid digestion. In the histological analysis of the implantation sites, macrophages and multinucleated giant cells could be observed after 30 days which after 180 days became a chronic infiltrate; although, no major differences were identified in red and white blood cell analyses and biochemical tests. Implantation altered the materials as observed in the Raman analysis and bismuth was detected both locally and within kidney samples after both periods of analysis, indicating the potential for accumulation of bismuth in this organ. Smaller amounts of bismuth than observed in the kidney were also detected in blood, liver and brain for the ProRoot MTA and HAp-Bi after 180 days. Bismuth was released from the ProRoot MTA locally and was detected systemically and in samples without silicon; thus, the null hypothesis was rejected. The bismuth release demonstrated that this element accumulated both locally and systemically, mainly in the kidneys in comparison with brain and liver regardless of the material base.


Subject(s)
Oxides , Silicon , Rats , Animals , Oxides/chemistry , Rats, Wistar , Bismuth/chemistry , Materials Testing , Calcium Compounds/chemistry , Silicates/chemistry , Drug Combinations , Aluminum Compounds/chemistry , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL