Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 628(8007): 320-325, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600268

ABSTRACT

Force-controlled release of small molecules offers great promise for the delivery of drugs and the release of healing or reporting agents in a medical or materials context1-3. In polymer mechanochemistry, polymers are used as actuators to stretch mechanosensitive molecules (mechanophores)4. This technique has enabled the release of molecular cargo by rearrangement, as a direct5,6 or indirect7-10 consequence of bond scission in a mechanophore, or by dissociation of cage11, supramolecular12 or metal complexes13,14, and even by 'flex activation'15,16. However, the systems described so far are limited in the diversity and/or quantity of the molecules released per stretching event1,2. This is due to the difficulty in iteratively activating scissile mechanophores, as the actuating polymers will dissociate after the first activation. Physical encapsulation strategies can be used to deliver a larger cargo load, but these are often subject to non-specific (that is, non-mechanical) release3. Here we show that a rotaxane (an interlocked molecule in which a macrocycle is trapped on a stoppered axle) acts as an efficient actuator to trigger the release of cargo molecules appended to its axle. The release of up to five cargo molecules per rotaxane actuator was demonstrated in solution, by ultrasonication, and in bulk, by compression, achieving a release efficiency of up to 71% and 30%, respectively, which places this rotaxane device among the most efficient release systems achieved so far1. We also demonstrate the release of three representative functional molecules (a drug, a fluorescent tag and an organocatalyst), and we anticipate that a large variety of cargo molecules could be released with this device. This rotaxane actuator provides a versatile platform for various force-controlled release applications.


Subject(s)
Delayed-Action Preparations , Rotaxanes , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/chemistry , Polymers/chemistry , Rotaxanes/chemistry , Pharmaceutical Preparations/chemistry , Fluorescent Dyes/chemistry
2.
Small ; 20(30): e2309431, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38402425

ABSTRACT

Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) is a promising gene editing tool to treat diseases at the genetic level. Nonetheless, the challenge of the safe and efficient delivery of CRISPR/Cas9 to host cells constrains its clinical applicability. In the current study, a facile, redox-responsive CRISPR/Cas9-Ribonucleoprotein (RNP) delivery system by combining iron-coordinated aggregation with liposomes (Fe-RNP@L) is reported. The Fe-RNP is formed by the coordination of Fe3+ with amino and carboxyl groups of Cas9, which modifies the lipophilicity and surface charge of RNP and alters cellular uptake from primary endocytosis to endocytosis and cholesterol-dependent membrane fusion. RNP can be rapidly and reversibly released from Fe-RNP in response to glutathione without loss of structural integrity and enzymatic activity. In addition, iron coordination also improves the stability of RNP and substantially mitigates cytotoxicity. This construct enabled highly efficient cytoplasmic/nuclear delivery (≈90%) and gene-editing efficiency (≈70%) even at low concentrations. The high payload content, high editing efficiency, good stability, low immunogenicity, and ease of production and storage, highlight its potential for diverse genome editing and clinical applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Iron , Oxidation-Reduction , Ribonucleoproteins , Gene Editing/methods , Iron/chemistry , Humans , Ribonucleoproteins/metabolism , Ribonucleoproteins/chemistry , Liposomes/chemistry , Gene Transfer Techniques , CRISPR-Associated Protein 9/metabolism
3.
J Thromb Thrombolysis ; 57(4): 730-738, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526751

ABSTRACT

Vaccines against SARS-CoV-2 have been recommended across the world, yet no study has investigated whether COVID-19 vaccination influences short-term warfarin anti-coagulation levels. Patients on stable warfarin treatment who received anti-SARS-CoV-2 vaccination were prospectively enrolled and followed up for three months. INR values less than 10 days before vaccination (baseline), 3-5 days (short-term) and 6-14 days (medium-term) after vaccination were recorded as INR0, INR1, and INR2, respectively. The variations of INR values within individuals were compared, and the linear mixed effect model was used to evaluate the variations of INR values at different time points. Logistic regression analysis was performed to determine covariates related to INR variations after COVID-19 vaccination. Vaccination safety was also monitored. There was a significant difference in INR values between INR0 and INR1 (2.15 vs. 2.26, p = 0.003), yet no marked difference was found between INR0 and INR2. The linear mixed effect model also demonstrated that INR variation was significant in short-term but not in medium-term or long-term period after vaccination. Logistic regression analysis showed that no investigated covariates, including age, vaccine dose, genetic polymorphisms of VKORC1 and CYP2C9 etc., were associated with short-term INR variations. Two patients (2.11%) reported gingival hemorrhage in the short-term due to increased INR values. The overall safety of COVID-19 vaccines for patients on warfarin was satisfying. COVID-19 vaccines may significantly influence warfarin anticoagulation levels 3-5 days after vaccination. We recommend patients on warfarin to perform at least one INR monitoring within the first week after COVID-19 vaccination.


Subject(s)
Anticoagulants , COVID-19 Vaccines , COVID-19 , International Normalized Ratio , Warfarin , Humans , Warfarin/therapeutic use , Warfarin/administration & dosage , Warfarin/adverse effects , Male , Female , Anticoagulants/therapeutic use , Anticoagulants/adverse effects , Anticoagulants/administration & dosage , Aged , Middle Aged , COVID-19/prevention & control , COVID-19/blood , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Prospective Studies , Blood Coagulation/drug effects , Time Factors , Vaccination , SARS-CoV-2/immunology , Drug Monitoring/methods
4.
Biomed Chromatogr ; 38(2): e5777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37990827

ABSTRACT

Although levetiracetam (LEV) has favorable linear pharmacokinetic properties, therapeutic drug monitoring (TDM) is necessary for pregnant women with epilepsy. This study aims to build a simple, reliable, and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determining LEV concentrations in plasma and saliva samples, to support the routine TDM of LEV in Chinese pregnant women with epilepsy. The stable isotope-labeled LEV-d6 was used as the internal standard. The extracted samples were analyzed using a UPLC-MS/MS system with positive electrospray ionization. Mobile phase A was water containing 5 mM ammonium acetate and 0.1% formic acid, and phase B was 1:1 methanol-acetonitrile with 0.1% formic acid. The method was validated and utilized to determine LEV concentrations in non-pregnant and pregnant patients with epilepsy. The developed method was validated in both plasma and saliva samples over a concentration range of 0.1-50 µg/mL. The intra- and inter-batch accuracy for LEV ranged from -7.0% to 2.9%, with precisions between 2.7% and 9.3%. In pregnant patients, the mean dose-standardized LEV trough plasma concentrations were significantly lower than those in non-pregnant patients (4.73 ± 2.99 vs. 7.74 ± 3.59 ng/mL per mg/day; P < 0.0001). It is recommended that the TDM of LEV should be routinely performed during the different stages of pregnancy.


Subject(s)
Epilepsy , Formates , Pregnant Women , Humans , Female , Pregnancy , Levetiracetam/therapeutic use , Chromatography, Liquid/methods , Drug Monitoring/methods , Tandem Mass Spectrometry/methods , Saliva , Epilepsy/drug therapy , Chromatography, High Pressure Liquid/methods
5.
Ecotoxicol Environ Saf ; 280: 116537, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38852469

ABSTRACT

Microplastics (MPs), emerging as significant pollutants, have been consistently detected in aquatic environments, with the Yangtze River experiencing a particularly severe level of microplastic pollution, exceeding all other watersheds in China. Polypropylene (PP), the plastic most abundantly found in the middle and lower reaches of the Yangtze River Basin, has less comprehensive research results into its toxic effects. Consequently, the present investigation employed zebrafish as a model organism to delve into the toxicological impacts of polypropylene microplastics (PP-MPs) with a diameter of 5 µm across varying concentrations (300 mg/L and 600 mg/L). Using histopathological, microbiota profiling, and transcriptomic approaches, we systematically evaluated the impact of PP-MPs exposure on the intestine and liver of zebrafish. Histopathological analysis revealed that exposure to PP-MPs resulted in thinner intestinal walls, damaged intestinal mucosa, and hepatic cellular damage. Intestinal microbiota profiling demonstrated that, the richness, uniformity, diversity, and homogeneity of gut microbes significantly increased after the PP-MPs exposure at high concentration. These alterations were accompanied by shifts in the relative abundance of microbiota associated with intestinal pathologies, suggesting a profound impact on the intestinal microbial community structure. Concurrently, hepatic transcriptome analysis and RT-qPCR indicated that the downregulation of pathways and genes associated with cell proliferation regulation and DNA damage repair mechanisms contributed to hepatic cellular damage, ultimately exerting adverse effects on the liver. Correlation analysis between the intestinal microbiota and liver transcriptome profiles further highlighted significant associations between intestinal microbiota and the downregulated hepatic pathways. Collectively, these results provide novel insights into the subacute toxicological mechanisms of PP-MPs in aquatic organisms and highlight the need for further research on the ecological and health risks associated with PP-MPs pollution.


Subject(s)
Gastrointestinal Microbiome , Liver , Microplastics , Polypropylenes , Water Pollutants, Chemical , Zebrafish , Animals , Microplastics/toxicity , Polypropylenes/toxicity , Water Pollutants, Chemical/toxicity , Liver/drug effects , Liver/pathology , Gastrointestinal Microbiome/drug effects , China , Intestines/drug effects , Intestines/pathology , Transcriptome/drug effects , Rivers/chemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology
6.
Mikrochim Acta ; 191(3): 149, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38376601

ABSTRACT

Proteins are the material basis of life and the primary carriers of life activities, containing various impurities that must be removed before use. To keep pace with the increasing complexity of protein samples, it is essential to constantly work on developing new purification technologies for downstream processes. While traditional downstream purification methods rely heavily on protein A affinity chromatography, there is still a lot of interest in finding safer and more cost-effective alternatives to protein A. Many non-affinity ligands and technologies have also been developed in biological purification recently. Here, the current status of biotechnology and the progress of protein separation technology from 2018 to 2023 are reviewed from the aspects of new preparation methods and new composite materials of commonly used separation media. The research status of new ligands with different mechanisms of action was reviewed, including the expanded application of affinity ligands, the development prospect of biotechnology such as polymer grafting, continuous column technology, and its new applications.


Subject(s)
Polymers , Ligands , Microspheres , Sepharose
7.
J Craniofac Surg ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133251

ABSTRACT

The removal of tumors at the root of the tongue can be challenging due to anatomic constraints (deep location of the root of the tongue, obstruction by the mandible), leading to poor surgical visibility. Clear visibility of the surgical field is crucial for complete excision to reduce recurrence, hence the need to choose an appropriate surgical approach based on the tumor's location and size. In this report, the authors describe a case where a midline mandibulotomy and temporary midline glossectomy were utilized to expose and resect a tumor at the root of the tongue. This approach allowed for the complete removal of the tumor while preserving the anterior tongue tissue and bilateral lingual arteries. The defect was then reconstructed using an anterolateral thigh flap. The patient showed good postoperative recovery with significant improvement in swallowing and speech functions. The authors emphasize that the surgical treatment of squamous cell carcinoma (SCC) at the root of the tongue should strive to ensure radical tumor removal while preserving surrounding healthy tissues and critical anatomic structures, particularly the lingual arteries, to facilitate better postoperative recovery for patients.

8.
Molecules ; 29(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39339380

ABSTRACT

Cancer stem cells (CSCs) are most likely the main cause of lung cancer formation, metastasis, drug resistance, and genetic heterogeneity. Three-dimensional (3D) ex vivo cell culture models can facilitate stemness improvement and CSC enrichment. Considering the critical role of extracellular matrix (ECM) on CSC properties, the present study developed a thermo-responsive hydrogel using the porcine decellularized lung for 3D cell culture, and the cell-laden hydrogel culturing model was used to explore the CSC characteristics and potential utilization in CSC-specific drug evaluation. Results showed that the lung dECM hydrogel (LEH) was composed of the main ECM components and displayed excellent cellular compatibility. In addition, lung cancer cells 3D cultured in LEH displayed the overexpression of metastasis-related genes and enhanced migration properties, as compared with those in two-dimensional (2D) conditions. Notably, the CSC features, including the expression level of stemness-associated genes, colony formation capability, drug resistance, and the proportion of cancer stem-like cells (CD133+), were also enhanced in 3D cells. Furthermore, the attenuation effect of epigallocatechin gallate (EGCG) on CSC properties in the 3D model was observed, confirming the potential practicability of the 3D culture on CSC-targeted drug screening. Overall, our results suggest that the fabricated LEH is an effective and facile platform for 3D cell culture and CSC-specific drug evaluation.


Subject(s)
Cell Culture Techniques, Three Dimensional , Hydrogels , Lung Neoplasms , Neoplastic Stem Cells , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Decellularized Extracellular Matrix/pharmacology , Decellularized Extracellular Matrix/chemistry , Lung/metabolism , Lung/pathology , Lung/cytology , Swine , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Culture Techniques/methods
9.
Biomacromolecules ; 24(5): 1943-1979, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37083404

ABSTRACT

Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Precision Medicine , Polymers/chemistry , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Phototherapy/methods , Theranostic Nanomedicine/methods , Cell Line, Tumor , Photoacoustic Techniques/methods
10.
Biomacromolecules ; 24(1): 332-343, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36562543

ABSTRACT

Natural fiber-reinforced biocomposites with excellent mechanical and biological properties have attractive prospects for internal medical devices. However, poor interfacial adhesion between natural silk fiber and the polymer matrix has been a disturbing issue for such applications. Herein, rigid-flexible agents, such as polydopamine (PDA) and epoxy soybean oil (ESO), were introduced to enhance the interfacial adhesion between Antheraea pernyi (Ap) silk and a common medical polymer, polycaprolactone (PCL). We compared two strategies of depositing PDA first (Ap-PDA-ESO) and grafting ESO first (Ap-ESO-PDA). The rigid-flexible interfacial agents introduced multiple molecular interactions at the silk-PCL interface. The "Ap-PDA-ESO" strategy exhibited a greater enhancement in interfacial adhesion, and interfacial toughening mechanisms were proposed. This work sheds light on engineering strong and tough silk fiber-based biocomposites for biomedical applications.


Subject(s)
Polymers , Silk , Polyesters
11.
J Pineal Res ; 75(3): e12900, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37492880

ABSTRACT

Transarterial chemoembolization (TACE) has been widely used for hepatocellular carcinoma. Reducing hypoxia in the tumor microenvironment after TACE remains a challenge as tumor progression is common in post-TACE patients due to the hypoxic tumor microenvironment. In this study, melatonin loaded on p(N-isopropyl-acrylamide-co-butyl methylacrylate) (PIB-M) was used for tumor embolism. Two types of human hepatoma cell lines were used to explore the mechanism by which melatonin prevents the growth and metastasis of cancer cells in vitro. A VX2 rabbit tumor model was used to evaluate the efficacy, mechanism, and safety of PIB-M in vivo. We found that under hypoxic condition, melatonin could inhibit tumor cell proliferation and migration by targeting hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGF-A) in vitro. In vivo, PIB-M inhibited tumor growth and metastasis in rabbit VX2 tumors by promoting apoptosis of tumor cells and targeting related angiogenic proteins and vascular permeability proteins. A high concentration of melatonin in the PIB-M group could be maintained in tumor tissue for 72 h after embolization. The liver and kidney functions were most damaged on the first day but recovered to normal on the seventh day after embolization in the PIB-M group. This novel method may open avenues for reduction of tumor growth and metastasis after TACE and is efficacy and safety, which may be used for treatment for other solid tumors and clinical translation.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Melatonin , Animals , Humans , Rabbits , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Nanogels/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Chemoembolization, Therapeutic/methods , Hypoxia , Tumor Microenvironment
12.
Macromol Rapid Commun ; 44(9): e2200827, 2023 May.
Article in English | MEDLINE | ID: mdl-36662644

ABSTRACT

The mineralization of type I collagen is a biological process occurring in vertebrates by which some hard tissues such as bone and dentin are constructed. Due to the extensive clinical needs for bone defect repair and remineralization of mineral-depleted dentin, biomimetic mineralization of collagen is attracting more and more interests. Synthetic analogs of noncollagenous proteins are necessary for directing the in vitro mineralization. In this paper, the function and mechanism of poly(acrylic acid) (PAA) in regulating the mineralization, especially intrafibrillar mineralization (IM) of collagen are reviewed. As two mineralization patterns (extrafibrillar and intrafibrillar) co-exist in natural hard tissues, differences between them in terms of microstructure, biodegradation, cytocompatibility, osteoinduction in vitro, and performance in vivo are systematically compared. Then the roles of PAA in biomimetic collagen IM within one-analog and two-analog systems are discussed, respectively. Moreover, mineralization of some self-mineralizable collagen matrices is described. Due to the interactions between collagen and PAA play a crucial role in the processes of collagen mineralization, some reference researches are also provided involving the collagen/PAA interactions in some other fields. Finally, this review is ended with an outlook for future potential improvements based on the collection of existing bottlenecks in this field.


Subject(s)
Collagen Type I , Collagen , Animals , Collagen Type I/chemistry , Collagen/chemistry , Acrylic Resins/chemistry , Biomimetics
13.
Cell Mol Biol Lett ; 28(1): 7, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694134

ABSTRACT

BACKGROUND: Mechanotransduction mechanisms whereby periodontal ligament stem cells (PDLSCs) translate mechanical stress into biochemical signals and thereby trigger osteogenic programs necessary for alveolar bone remodeling are being deciphered. Low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt transmembrane receptor, has been qualified as a key monitor for mechanical cues. However, the role of LRP6 in the mechanotransduction of mechanically induced PDLSCs remains obscure. METHODS: The Tension System and tooth movement model were established to determine the expression profile of LRP6. The loss-of-function assay was used to investigate the role of LRP6 on force-regulated osteogenic commitment in PDLSCs. The ability of osteogenic differentiation and proliferation was estimated by alkaline phosphatase (ALP) staining, ALP activity assay, western blotting, quantitative real-time PCR (qRT-PCR), and immunofluorescence. Crystalline violet staining was used to visualize cell morphological change. Western blotting, qRT-PCR, and phalloidin staining were adopted to affirm filamentous actin (F-actin) alteration. YAP nucleoplasmic localization was assessed by immunofluorescence and western blotting. YAP transcriptional response was evaluated by qRT-PCR. Cytochalasin D was used to determine the effects of F-actin on osteogenic commitment and YAP switch behavior in mechanically induced PDLSCs. RESULTS: LRP6 was robustly activated in mechanically induced PDLSCs and PDL tissues. LRP6 deficiency impeded force-dependent osteogenic differentiation and proliferation in PDLSCs. Intriguingly, LRP6 loss caused cell morphological aberration, F-actin dynamics disruption, YAP nucleoplasmic relocation, and subsequent YAP inactivation. Moreover, disrupted F-actin dynamics inhibited osteogenic differentiation, proliferation, YAP nuclear translocation, and YAP activation in mechanically induced PDLSCs. CONCLUSIONS: We identified that LRP6 in PDLSCs acted as the mechanosensor regulating mechanical stress-inducible osteogenic commitment via the F-actin/YAP cascade. Targeting LRP6 for controlling alveolar bone remodeling may be a prospective therapy to attenuate relapse of orthodontic treatment.


Subject(s)
Actins , Low Density Lipoprotein Receptor-Related Protein-6 , Osteogenesis , Periodontal Ligament , Stem Cells , Actins/genetics , Actins/metabolism , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Osteogenesis/genetics , Osteogenesis/physiology , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Stem Cells/metabolism
14.
J Craniofac Surg ; 34(8): e720-e724, 2023.
Article in English | MEDLINE | ID: mdl-37253247

ABSTRACT

OBJECTIVE: The objective of this systematic review and meta-analysis was to investigate the clinical significance of one-abutment at one-time protocol in healed posterior edentulism. METHODS: An online search was undertaken in November 2022, which included PubMed, Cochrane Library, Wiley Online Library, and Google Scholar in addition to manual searching. The Cochrane Collaboration tool was performed to assess the quality of selected articles. Marginal bone loss (MBL) was estimated by the performance of meta-analysis. Moreover, all the pooled analyses were based on random-effect models. Subgroup analysis was applied to evaluate the effects of different variables. RESULTS: In line with the inclusion criteria, 6 trials with 446 dental implants were identified. The meta-analysis showed a total of 0.22 mm less MBL within 6 months and decreased by 0.30 mm at 1-year follow-up in favor of one-abutment at one-time protocol. A significant loss MBL was found in implants placed equicrestally using one-abutment at one-time protocol [6 months: mean difference (MD): -0.22 mm; 95% CI, -0.34 to 0.10 mm, P =0.0004; 12 months: MD: -0.32 mm; 95% CI, -0.40 to -0.24 mm, P <0.00001), whereas no difference was found between 2 groups in an implant placed subscrestally (6 months: MD: 0.14 mm; 95% CI, -0.03 to 0.22 mm; P =0.11; 12 months: MD: -0.12 mm; 95% CI, -0.32 to 0.08 mm; P =0.23). CONCLUSIONS: Implant platform position might greatly affect the marginal bone level. Moreover, one-abutment at one-time protocol demonstrated better bone preservation in implants placed equicrestally in healed posterior edentulism. CLINICAL RELEVANCE: This study highlights the significant clinical application of one-abutment at one-time protocol in healed posterior edentulism.


Subject(s)
Alveolar Bone Loss , Bone Diseases, Metabolic , Dental Implants , Humans , Dental Implantation, Endosseous/methods
15.
Int J Mol Sci ; 24(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37569875

ABSTRACT

The natural healing process of bone is impaired in the presence of tumors, trauma, or inflammation, necessitating external assistance for bone regeneration. The limitations of autologous/allogeneic bone grafting are still being discovered as research progresses. Bone tissue engineering (BTE) is now a crucial component of treating bone injuries and actively works to promote vascularization, a crucial stage in bone repair. A biomaterial with hydroxyapatite (HA), which resembles the mineral makeup of invertebrate bones and teeth, has demonstrated high osteoconductivity, bioactivity, and biocompatibility. However, due to its brittleness and porosity, which restrict its application, scientists have been prompted to explore ways to improve its properties by mixing it with other materials, modifying its structural composition, improving fabrication techniques and growth factor loading, and co-cultivating bone regrowth cells to stimulate vascularization. This review scrutinizes the latest five-year research on HA composite studies aimed at amplifying vascularization in bone regeneration.


Subject(s)
Biomedical Engineering , Durapatite , Durapatite/chemistry , Tissue Engineering/methods , Bone and Bones , Biocompatible Materials , Bone Regeneration , Tissue Scaffolds/chemistry
16.
Water Sci Technol ; 88(9): 2465-2472, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37966195

ABSTRACT

The pollution caused by microplastics (MPs) has gained global attention due to their potential risks to organisms and human health. The process of photo-aging, which plays a crucial role in the transformation of MPs in aquatic environments, has the potential to influence the ecological risk posed by these particles. Dissolved organic matter (DOM) is a prevalent photosensitizer in surface waters that has been shown to facilitate the transformation of various organic compounds by generating reactive oxygen species under light irradiation. The present study investigated the influence of humic acid (HA), a typical component of DOM, on the photo-aging process of polyvinyl chloride MPs (PVC-MPs), using Fourier transform infrared spectroscopy, as well as assessing the resulting ecological risk through bioassays. The results revealed that the presence of HA enhanced the photo-aging of PVC-MP. Moreover, the leachate exhibited higher acute and genetic toxicity under light irradiation when compared to dark conditions. Notably, the presence of HA significantly increased the toxicity of the leachate, emphasizing the need to consider the impact of DOM when assessing the ecological risk of MPs in surface waters. These findings contribute to a more comprehensive understanding of the potential risks associated with microplastic pollution in natural environments.


Subject(s)
Skin Aging , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics/toxicity , Dissolved Organic Matter , Polyvinyl Chloride/toxicity , Water Pollutants, Chemical/chemistry , Humic Substances/analysis
17.
Gene Ther ; 29(3-4): 127-137, 2022 04.
Article in English | MEDLINE | ID: mdl-33542455

ABSTRACT

X-linked Charcot-Marie-Tooth neuropathy (CMTX) is caused by mutations in the gene encoding Gap Junction Protein Beta-1 (GJB1)/Connexin32 (Cx32) in Schwann cells. Neurotrophin-3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulating axon regeneration and myelination. Improvements in these parameters have been shown previously in a CMT1 model, TremblerJ mouse, with NT-3 gene transfer therapy. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 3-month-old Cx32 knockout (KO) mice. Measurable levels of NT-3 were found in the serum at 6-month post gene delivery. The outcome measures included functional, electrophysiological and histological assessments. At 9-months of age, NT-3 treated mice showed no functional decline with normalized compound muscle action potential amplitudes. Myelin thickness and nerve conduction velocity significantly improved compared with untreated cohort. A normalization toward age-matched wildtype histopathological parameters included increased number of Schmidt-Lanterman incisures, and muscle fiber diameter. Collectively, these findings suggest a translational application to CMTX1.


Subject(s)
Axons , Charcot-Marie-Tooth Disease , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Charcot-Marie-Tooth Disease/therapy , Connexins/genetics , Connexins/metabolism , Genetic Therapy , Humans , Mice , Mice, Knockout , Mutation , Nerve Regeneration , Schwann Cells/metabolism
18.
Cancer Immunol Immunother ; 71(12): 2969-2983, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35546204

ABSTRACT

Heparanase has been identified as a universal tumor-associated antigen, but heparanase epitope peptides are difficult to recognize. Therefore, it is necessary to explore novel strategies to ensure efficient delivery to antigen-presenting cells. Here, we established a novel immunotherapy model targeting antigens to dendritic cell (DC) receptors using a combination of heparanase CD4+ and CD8+ T-cell epitope peptides to achieve an efficient cytotoxic T-cell response, which was associated with strong activation of DCs. First, pegylated poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were used to encapsulate a combined heparanase CD4+ and CD8+ T-cell epitope alone or in combination with Toll-like receptor 3 and 7 ligands as a model antigen to enhance immunogenicity. The ligands were then targeted to DC cell-surface molecules using a DEC-205 antibody. The binding and internalization of these PLGA NPs and the activation of DCs, the T-cell response and the tumor-killing effect were assessed. The results showed that PLGA NPs encapsulating epitope peptides (mHpa399 + mHpa519) could be targeted to and internalized by DCs more efficiently, stimulating higher levels of IL-12 production, T-cell proliferation and IFN-γ production by T cells in vitro. Moreover, vaccination with DEC-205-targeted PLGA NPs encapsulating combined epitope peptides exhibited higher tumor-killing efficacy both in vitro and in vivo. In conclusion, delivery of PLGA NP vaccines targeting DEC-205 based on heparanase CD4+ and CD8+ T-cell epitopes are suitable immunogens for antitumor immunotherapy and have promising potential for clinical applications.


Subject(s)
Nanoparticles , Neoplasms , Humans , Epitopes, T-Lymphocyte/metabolism , Polyglycolic Acid/chemistry , Polyglycolic Acid/metabolism , Toll-Like Receptor 3 , Polylactic Acid-Polyglycolic Acid Copolymer/metabolism , Lactic Acid/chemistry , Lactic Acid/metabolism , Ligands , Dendritic Cells , Immunotherapy/methods , CD8-Positive T-Lymphocytes , Interleukin-12/metabolism , Peptides/metabolism , CD4-Positive T-Lymphocytes , Polyethylene Glycols
19.
Small ; 18(13): e2105958, 2022 04.
Article in English | MEDLINE | ID: mdl-35362270

ABSTRACT

Shape memory polymers (SMPs) are a class of smart materials that change shape when stimulated by environmental stimuli. Different from the shape memory effect at the macro level, the introduction of micro-patterning technology into SMPs strengthens the exploration of the shape memory effect at the micro/nano level. The emergence of shape memory micro/nano patterns provides a new direction for the future development of smart polymers, and their applications in the fields of biomedicine/textile/micro-optics/adhesives show huge potential. In this review, the authors introduce the types of shape memory micro/nano patterns, summarize the preparation methods, then explore the imminent and potential applications in various fields. In the end, their shortcomings and future development direction are also proposed.


Subject(s)
Polymers , Textiles
20.
Anal Biochem ; 642: 114564, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35081373

ABSTRACT

Seneca Valley virus (SVV) is related to vesicular disease in pigs, and its clinical symptoms are indistinguishable from other notifiable clinical symptoms of vesicular disease such as foot-and-mouth disease. The rapid and accurate detection of SVV is essential to confirm the pathogenic factors and initiate the implementation of control measures. The development of a rapid, simple, convenient, and low-cost molecular (nucleic acid amplification) test that can be used at the sample collection point has been identified as a key component for controlling SVV. This study describes the development and demonstration of recombinase polymerase amplification (RPA) test targeting the conserved regions of SVV for detection of SVV. The Primers and probes designed by us have shown good sensitivity and specificity in RPA test, which is helpful for RPA to be an effective tool for rapid diagnosis of SVV.


Subject(s)
Nucleic Acid Amplification Techniques , Picornaviridae/genetics , Real-Time Polymerase Chain Reaction , Picornaviridae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL