Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 144(46): 21267-21277, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36374167

ABSTRACT

Tandem semi-stable complementary domains play an important role in life, while the role of these domains in the folding process of nucleic acid molecules has not been systematically studied. Here, we designed a clean model system by synthesizing sequence-defined DNA-OEG copolymers composed of ssDNA fragments with palindromic sequences and orthogonal oligo(tetraethylene glycol) (OEG) linkers. By altering the lengths of DNA units (6-12 nt) and OEG linkers (Xn = 0-4) separately, we systematically studied how stabilities of tandem complementary domains and connecting flexibilities affect the assembly topology. Combining experimental methods and coarse-grained molecular simulation analysis, distributions of multiple assembled conformations (mainly monomers, dimers, and clusters) were characterized. Both results indicated that tandem semi-stable complementary domains tend to form homogeneous closed circular dimers instead of larger clusters due to the synergistic enhancement effect, and the distributions of each conformation highly depend on flexibilities.


Subject(s)
DNA , Polymers , DNA, Single-Stranded
2.
Langmuir ; 38(37): 11137-11148, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36070512

ABSTRACT

Understanding the behaviors of nanoparticles at interfaces is crucial not only for the design of novel nanostructured materials with superior properties but also for a better understanding of many biological systems where nanoscale objects such as drug molecules, viruses, and proteins can interact with various interfaces. Theoretical studies and tailored computer simulations offer unique approaches to investigating the evolution and formation of structures as well as to determining structure-property relationships regarding the interfacial nanostructures. In this feature article, we summarize our efforts to exploit computational approaches as well as theoretical modeling in understanding the organization of nanoscale objects at the interfaces of various systems. First, we present the latest research advances and state-of-the-art computational techniques for the simulation of nanoparticles at interfaces. Then we introduce the applications of multiscale modeling and simulation methods as well as theoretical analysis to explore the basic science and the fundamental principles in the interfacial nanoparticle organization, covering the interfaces of polymer, nanoscience, biomacromolecules, and biomembranes. Finally, we discuss future directions to signify the framework in tailoring the interfacial organization of nanoparticles based on the computational design. This feature article could promote further efforts toward fundamental research and the wide applications of theoretical approaches in designing interfacial assemblies for new types of functional nanomaterials and beyond.


Subject(s)
Nanoparticles , Nanostructures , Computer Simulation , Models, Theoretical , Nanoparticles/chemistry , Nanostructures/chemistry , Polymers/chemistry
3.
J Am Chem Soc ; 143(41): 17250-17260, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34618447

ABSTRACT

Nonbactericidal polymers that prevent bacterial attachment are important for public health, environmental protection, and avoiding the generation of superbugs. Here, inspired by the physical bactericidal process of carbon nanotubes and graphene derivatives, we develop nonbactericidal polymers resistant to bacterial attachment by using multicomponent reactions (MCRs) to introduce molecular "needles" (rigid aliphatic chains) and molecular "razors" (multicomponent structures) into polymer side chains. Computer simulation reveals the occurrence of spontaneous entropy-driven interactions between the bacterial bilayers and the "needles" and "razors" in polymer structures and provides guidance for the optimization of this type of polymers for enhanced resistibility to bacterial attachment. The blending of the optimized polymer with commercially available polyurethane produces a film with remarkably superior stability of the resistance to bacterial adhesion after wear compared with that of commercial mobile phone shells made by the Sharklet technology. This proof-of-concept study explores entropy-driven polymers resistant to bacterial attachment via a combination of MCRs, computer simulation, and polymer chemistry, paving the way for the de novo design of nonbactericidal polymers to prevent bacterial contamination.


Subject(s)
Polymers
4.
Nat Commun ; 13(1): 2279, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477583

ABSTRACT

Ligaments are flexible and stiff tissues around joints to support body movements, showing superior toughness and fatigue-resistance. Such a combination of mechanical properties is rarely seen in synthetic elastomers because stretchability, stiffness, toughness, and fatigue resistance are seemingly incompatible in materials design. Here we resolve this long-standing mismatch through a hierarchical crosslinking design. The obtained elastomer can endure 30,000% stretch and exhibit a Young's modulus of 18 MPa and toughness of 228 MJ m-3, outperforming all the reported synthetic elastomers. Furthermore, the fatigue threshold is as high as 2,682 J m-2, the same order of magnitude as the ligaments (~1,000 J m-2). We reveal that the dynamic double-crosslinking network composed of Li+-O interactions and PMMA nanoaggregates allows for a hierarchical energy dissipation, enabling the elastomers as artificial ligaments in soft robotics.


Subject(s)
Elastomers , Ligaments , Chemical Phenomena , Elastic Modulus
5.
ACS Nano ; 15(3): 4608-4616, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33625839

ABSTRACT

The transport of nanoparticles in semiflexible networks, which form diverse principal structural components throughout living systems, is important in biology and biomedical applications. By combining large-scale molecular simulations as well as theoretical analysis, we demonstrate here that nanoparticles in polymer networks with semiflexible strands possess enhanced heterogeneous diffusion characterized by more evident hopping dynamics. Particularly, the hopping energy barrier approximates to linear dependence on confinement parameters in the regime of moderate rigidity, in contrast to the quadratic dependence of both its soft and hard counterparts. This nonmonotonic feature can be attributed to the competition between the conformation entropy and the bending energy regulated by the chain rigidity, captured by developing an analytical model of a hopping energy barrier. Moreover, these theoretical results agree reasonably well with previous experiments. The findings bear significance in unraveling the fundamental physics of substance transport confined in network-topological environments and would provide an explanation for the dynamics diversity of nanoparticles within various networks, biological or synthetic.


Subject(s)
Nanoparticles , Polymers , Diffusion , Entropy , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL