Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Res ; 256: 119181, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38768884

ABSTRACT

Microplastic contamination has rapidly become a serious environmental issue, threatening marine ecosystems and human health. This review aims to not only understand the distribution, impacts, and transfer mechanisms of microplastic contamination but also to explore potential solutions for mitigating its widespread impact. This review encompasses the categorisation, origins, and worldwide prevalence of microplastics and methodically navigates the complicated structure of microplastics. Understanding the sources of minute plastic particles infiltrating water bodies worldwide is critical for successful removal. The presence and accumulation of microplastics has far reaching negative impacts on various marine creatures, eventually extending its implications to human health. Microplastics are known to affect the metabolic activities and the survival of microbial communities, phytoplankton, zooplankton, and fauna present in marine environments. Moreover, these microplastics cause developmental abnormalities, endocrine disruption, and several metabolic disorders in humans. These microplastics accumulates in aquatic environments through trophic transfer mechanisms and biomagnification, thereby disrupting the delicate balance of these ecosystems. The review also addresses the tactics for minimising the widespread impact of microplastics by suggesting practical alternatives. These include increasing public awareness, fostering international cooperation, developing novel cleanup solutions, and encouraging the use of environment-friendly materials. In conclusion, this review examines the sources and prevalence of microplastic contamination in marine environment, its impacts on living organisms and ecosystems. It also proposes various sustainable strategies to mitigate the problem of microplastics pollution. Also, the current challenges associated with the mitigation of these pollutants have been discussed and addressing these challenges require immediate and collective action for restoring the balance in marine ecosystems.


Subject(s)
Ecosystem , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Nanotechnology , Animals , Environmental Monitoring/methods , Humans
2.
Chemosphere ; 322: 138152, 2023 May.
Article in English | MEDLINE | ID: mdl-36791812

ABSTRACT

Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.


Subject(s)
Polyvinyls , Water , Polymers , Filtration
3.
Chemosphere ; 303(Pt 3): 135205, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35667502

ABSTRACT

When it comes to electrocatalysis, the creation of nanodevices, the research of energy and the environment, and diagnostics, nanoporous materials are an asset. Nanoporous membranes, which can be used to filter water, have recently been the subject of new research and are summarized in this review. These membranes are used to remove salts and metallic ions from the water following an analysis of several nanoporous membrane types and production procedures. Demonstrations and discussions of these membrane systems are then conducted. Nanoporous membranes can be used to filter water, according to the conclusions of this study, which will help readers better grasp how they work. As a result, novel water purification nanoporous compounds that are easy to manufacture, inexpensive, and effective will be developed. Merits and demerits of nanoporous membrane for water treatment and its advancements in purification were discussed.


Subject(s)
Nanopores , Water Purification , Ions , Membranes , Membranes, Artificial , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL