Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Eur J Appl Physiol ; 124(2): 403-415, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38038740

ABSTRACT

Rinsing the mouth with a carbohydrate (CHO) solution has been shown to enhance exercise performance while reducing neuromuscular fatigue. This effect is thought to be mediated through the stimulation of oral receptors, which activate brain areas associated with reward, motivation, and motor control. Consequently, corticomotor responsiveness is increased, leading to sustained levels of neuromuscular activity prior to fatigue. In the context of endurance performance, the evidence regarding the central involvement of mouth rinse (MR) in performance improvement is not conclusive. Peripheral mechanisms should not be disregarded, particularly considering factors such as low exercise volume, the participant's fasting state, and the frequency of rinsing. These factors may influence central activations. On the other hand, for strength-related activities, changes in motor evoked potential (MEP) and electromyography (EMG) have been observed, indicating increased corticospinal responsiveness and neuromuscular drive during isometric and isokinetic contractions in both fresh and fatigued muscles. However, it is important to note that in many studies, MEP data were not normalised, making it difficult to exclude peripheral contributions. Voluntary activation (VA), another central measure, often exhibits a lack of changes, mainly due to its high variability, particularly in fatigued muscles. Based on the evidence, MR can attenuate neuromuscular fatigue and improve endurance and strength performance via similar underlying mechanisms. However, the evidence supporting central contribution is weak due to the lack of neurophysiological measures, inaccurate data treatment (normalisation), limited generalisation between exercise modes, methodological biases (ignoring peripheral contribution), and high measurement variability.Trial registration: PROSPERO ID: CRD42021261714.


Subject(s)
Mouthwashes , Muscle Fatigue , Humans , Mouthwashes/pharmacology , Muscle Fatigue/physiology , Carbohydrates/pharmacology , Electromyography , Exercise/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Evoked Potentials, Motor/physiology
2.
Eur J Sport Sci ; 21(2): 224-230, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32056510

ABSTRACT

Carbohydrate (CHO) mouth rinse has been shown to improve endurance performance and maintain the central drive of contracting muscles. Salt (NaCl) mouth rinse solution, often used in dentistry to desensitise the oral cavity to pain, could also activate cortical areas of the brain. Hence, the objective of this preliminary study was to investigate whether CHO (glucose) and NaCl mouth rinses could attenuate the reduction in maximum voluntary contraction (MVC) and sustained MVC (sMVC) following an endurance exercise (30-minute cycling at 70% VO2max). Ten subjects (male, age: 22 ± 1 years, weight: 65.3 ± 12.4 kg, height: 164.5 ± 7.5 cm, VO2max: 48.3 ± 6.1 mL kg-1 min-1) completed three trials of 30-minute cycling exercise. In a randomised cross-over study, in each trial, the participants rinsed using either water, 6% glucose, or 6% NaCl solution for 5 s immediately prior to and every 10 min during the cycling exercise. The MVC and sMVC were measured pre and post cycling. Analysis of variance showed significant interaction and time effects for MVC, while for sMVC there was a significant interaction with time and group effects. Both MVC and sMVC were higher post cycling in the glucose and NaCl groups compared to the water group, which suggests that activation of glucose and NaCl oral receptors could better preserve post-exercise force production. This is the first study to show that NaCl mouth rinse can produce a comparable effect on glucose. Hence, mouth rinses may be able to activate other distinct pathways that could attenuate fatigue.


Subject(s)
Glucose/administration & dosage , Mouthwashes/pharmacology , Muscle Fatigue/drug effects , Sodium Chloride/administration & dosage , Bicycling/physiology , Cross-Over Studies , Humans , Male , Muscle Strength/drug effects , Physical Endurance/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL