Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Environ Res ; 245: 118024, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38151151

ABSTRACT

River systems are important recipients of environmental plastic pollution and have become key pathways for the transfer of mismanaged waste from the land to the ocean. Understanding the sources and fate of plastic debris, including plastic litter (>5 mm) and microplastics (MPs) (<5 mm), entering different riverine systems is essential to mitigate the ongoing environmental plastic pollution crisis. We comprehensively investigated the plastic pollution in the catchments of two rivers in the Yangtze River basin: an urban river, the Suzhou section of the Beijing-Hangzhou Grand Canal (SZ); and a pristine rural river, the Jingmen section of the Hanjiang River (JM). The abundance of plastic pollutants in SZ was significantly higher than in JM: 0.430 ± 0.450 items/m3 and 0.003 ± 0.003 items/m3 of plastic litter in the water; 23.47 ± 25.53 n/m3 and 2.78 ± 1.55 n/m3 MPs in the water; and 218.82 ± 77.40 items/kg and 5.30 ± 1.99 items/kg of MPs in the sediment, respectively. Plastic litter and MPs were closely correlated in abundance and polymer composition. Overall, the polymer type, shape and color of MPs were dominant by polypropylene (42.5%), fragment (60.4%) and transparent (40.0%), respectively. Source tracing analysis revealed that packaging, shipping, and wastewater were the primary sources of plastic pollutants. The mantel analysis indicated that socio-economic and geospatial factors play crucial roles in driving the hotspot formation of plastic pollution in river networks. The composition of the MP communities differed significantly between the sediments and the overlying water. The urban riverbed sediments had a more pronounced pollutant 'sink' effect compared with the pristine rivers. These findings suggested that the modification of natural streams during urbanization may influence the transport and fate of plastic pollutants in them. Our results offer pivotal insights into effective preventive measures.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Plastics , Rivers , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Microplastics , Water
2.
Environ Sci Technol ; 54(20): 12979-12988, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32966052

ABSTRACT

A new technique involving large-volume (10 m3) samples of seawater was used to determine the abundance of microplastics (MPs) in the water column in the West Pacific Ocean and the East Indian Ocean. Compared to the conventional sampling methods based on smaller volumes of water, the new data yielded abundance values for the deep-water column that were at least 1-2 orders of magnitude lower. The data suggested that limited bulk volumes currently used for surface sampling are insufficient to obtain accurate estimates of MP abundance in deep water. Size distribution data indicated that the lateral movement of MPs into the water column contributed to their movement from the surface to the bottom. This study provides a reliable dataset for the water column to enable a better understanding of the transport and fate of plastic contamination in the deep-ocean ecosystem.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Indian Ocean , Pacific Ocean , Plastics , Water Pollutants, Chemical/analysis
3.
Dent Mater ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39095246

ABSTRACT

OBJECTIVES: This multicenter study aimed to evaluate visual-instrumental agreement of six color measurement devices and optimize three color difference equations using a dataset of visual color differences (∆V) from expert observers. METHODS: A total of 154 expert observers from 16 sites across 5 countries participated, providing visual scaling on 26 sample pairs of artificial teeth using magnitude estimation. Three color difference equations (ΔE*ab, ∆E00, and CAM16-UCS) were tested. Optimization of all three equations was performed using device-specific weights, and the standardized residual sum of squares (STRESS) index was used to evaluate visual-instrumental agreement. RESULTS: The ΔE*ab formula exhibited STRESS values from 18 to 40, with visual-instrumental agreement between 60 % and 82 %. The ∆E00 formula showed STRESS values from 26 to 32, representing visual-instrumental agreement of 68 % to 74 %. CAM16-UCS demonstrated STRESS values from 32 - 39, with visual-instrumental agreement between 61-68 %. Following optimization, STRESS values decreased for all three formulas, with ΔE' demonstrating average visual-instrumental agreement of 79 % and ∆E00 of 78 %. CAM16-UCS showed average visual-instrumental agreement of 76 % post optimization. SIGNIFICANCE: Optimization of color difference equations notably improved visual-instrumental agreement, overshadowing device performance. The optimzed ΔE' formula demonstrated the best overall performance combining computational simplicty with outstanding visual-instrumental agreement.

4.
J Food Drug Anal ; 32(1): 65-78, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38526591

ABSTRACT

Aristolochic acid nephropathy (AAN) has drawn increasing public attention. Organic anion transporters (OATs) are considered to be responsible for mediating nephrotoxicity of aristolochic acids (AAs), as AAs are typical OAT1 substrates that exhibit anionic properties and contain one hydrophobic domain. Inspired by the OAT1 three-dimensional structure or substrate/protein interactions involved in transport, we designed a magnetic polymeric hybrid, mimicking the effect of basic and aromatic residues of OAT1, for efficient enriching aristolochic acid I (AA I) and aristolochic acid II (AA II) in Traditional Chinese patent medicines (TCPM). N, N-dimethylaminopropyl acrylamide (DMAPAm) was used as a cationic monomer and copolymerized with divinylbenzene (DVB) onto the surface of monodisperse magnetic nanoparticles (denoted as MNs@SiO2T-DvbDam). The magnetic polymer hybrid demonstrated high selectivity and capacity for AAs, which was mainly attributed to (1) electrostatic interactions from the cationic or basic moiety of DMAPAm and (2) the hydrophobic and π-π stacking interactions from the aromatic ring of DVB. Additionally, the surface of the hybrid exhibited amphiphilic property according to the ionization of DMAPAm, thus improving the compatibility of the adsorbent with the aqueous sample matrix. This strategy was proven to be robust in the analysis of real drug samples, which was characterized by a good linearity, high recovery and satisfactory reusability. This work confirmed that the proposed tool could be a promising candidate for enhancing the extraction selectivity of AAs in Traditional Chinese medicines (TCM).


Subject(s)
Aristolochic Acids , Nanocomposites , Acrylamide , Polymers , Magnetic Phenomena
5.
Sci Total Environ ; 902: 166152, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567296

ABSTRACT

Marine microplastic (MP) pollution represents a global environmental issue that has ignited considerable apprehension within the international community. Seagrass beds, which serve as nearshore marine ecosystems, have emerged as focal points of plastic and MP contamination due to the pronounced density of anthropogenic activities and the hydrological mitigating effects of submerged vegetation. Nevertheless, our comprehension of MPs within seagrass ecosystems remains constrained. In this study, we employed bibliometric analyses and comprehensive data exploration to summarize the historical progression of the development, pivotal areas of interest, and research deficiencies, followed by proposing future research directions for MP pollution in seagrass beds. The 37 selected papers were sourced from the Web of Science Core Collection scientific database as of December 31st, 2022. Based on the current evaluation, MPs are ubiquitously discovered within seagrass canopies, sediments, and marine organisms, while less than 15 % of seagrass species worldwide have been investigated. Moreover, methodological inconsistencies in sampling, processing and visualization between studies hindered the fusion and comparison of data. MPs in upper sediments and seagrass blades were the most widely investigated, with an average abundance of 263.4 ± 309.2 n/kg and 0.09 ± 0.03 n/blade. In all environmental compartments, the prevalent forms of MPs comprise fibrous and fragmented particles, encompassing the dominant polymers such as polypropylene, polyethylene and polyethylene terephthalate. However, the source of MPs in seagrass beds based on MP characteristics and local hydrodynamics has not been comprehensively analyzed in previous studies. The evidence for MPs acting as pollutants and contaminant carries impacting the growth and decline of seagrass is also weak. Currently, the precise implications of MPs on submerged vegetation, organisms, and the broader seagrass ecosystem remain inconclusive. However, considering the persistent accumulation of MPs, it is imperative to explore the ecological hazards they may pose within the foreseeable future.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Plastics , Environmental Monitoring , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 858(Pt 1): 159769, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309272

ABSTRACT

Environmental problems caused by microplastics (MPs) are attracting global attention. The ecological risks of bacteria attached to MPs have not been studied in detail under low temperature conditions. Here, MPs in surface water were sampled in winter from the Changjiang (or Yangtze) River Estuary. The physical and chemical characteristics of the MPs were identified, and the diversity and species composition of bacteria on the surface water MPs were analyzed. Phenotypic prediction analysis was used to analyze the potential risk of bacteria in the biofilm on the surfaces of MPs. The main chemical composition in the MPs in the surface water were PP (polypropylene), PE (polyethylene), PS (polystyrene) and other light weight MPs. Sampling sites played a decisive role in the bacterial species composition. The potential plastic-degrading bacterium Acinetobacter and the potential pathogenic bacterium Pseudomonas showed significant differences across different sampling sites. Microbial communities on the surfaces of MPs in winter were not significantly different from planktonic bacteria in the water body. Phenotypic prediction results showed that bacteria on the surface of MPs had a marked capacity to form biofilms, but a low pathogenicity risk. Based on the results of biodiversity analysis and phenotypic prediction, the potential ecological risk of bacteria in biofilms on MP surfaces is lower at low temperatures. In addition, the numerical simulation results show that the possibility of bacteria attached to MPs from the Changjiang River entering the Pacific Ocean in winter is small. MPs attached bacteria in the Changjiang estuary have low ecological risk to the estuary and the Pacific Ocean in winter.


Subject(s)
Microbiota , Water Pollutants, Chemical , Microplastics , Plastics , Water/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Estuaries , Bacteria
7.
J Hazard Mater ; 451: 131125, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36889079

ABSTRACT

Microplastics (MPs) are found in rivers and offshore areas. However, there is a lack of detailed research on the changes of surface microbial species attached to MPs when MPs enter the sea. Moreover, no study has been conducted on changes to plastic-degrading bacteria during this process. In this study, using rivers and offshore in Macau, China as examples, bacterial diversity and bacterial species composition attached to surface water and MPs at four river sampling stations and four offshore sampling stations around Macau were studied. Plastic-degrading bacteria, plastic-related metabolic processes, and plastic-related enzymes were analyzed. The results showed that MPs-attached bacteria in rivers and offshore were different with the planktonic bacteria (PB). The proportion of major families on the surface of MPs continued to increase from rivers to estuaries. MPs could significantly enrich plastic-degrading bacteria both in rivers and offshore. The proportion of plastic-related metabolic pathways on the surface bacteria of MPs in rivers was higher than that in offshore waters. Bacteria on the surface of MPs in rivers may induce higher plastic degradation than offshore. Salinity significantly alters the distribution of plastic-degrading bacteria. MPs may degrade more slowly in the oceans, posing a long-term threat to marine life and human health.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Rivers , Salinity , Water Pollutants, Chemical/analysis , Oceans and Seas , Microplastics , Bacteria , Environmental Monitoring/methods
8.
Mar Environ Res ; 188: 106005, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37156673

ABSTRACT

Riverine microplastic (MP) discharge into the ocean contributes greatly to global MP contamination, yet our understanding of this process remains primitive. To deepen our interpretation of the dynamic MP variation throughout the estuarine water columns, we sampled at Xuliujing, the saltwater intrusion node of the Yangtze River Estuary, over the course of ebb and flood tides in four seasons (July and October 2017, January and May 2018 respectively). We observed that the collision of downstream and upstream currents contributed to the high MP concentration and that the mean MP abundance fluctuated with the tide. A model of microplastics residual net flux (MPRF-MODEL), taking the seasonal abundance and vertical distribution of MP along with current velocity into consideration, was developed to predict the net flux of MP throughout the full water columns. 2154 ± 359.7 t/year of MP was estimated to flow into the East China Sea via the River in 2017-2018. Our study suggests that riverine MP flux can be overestimated due to reciprocating current carried MP from the estuary. Using the tidal and seasonal variation in MP distribution, we calculated the tide impact factor index (TIFI) for the Yangtze River Estuary to be between 38.11% and 58.05%. In summary, this study provides a baseline of MP flux research in the Yangtze River for similar tidal-controlled rivers and a contextual understanding of how to appropriately sample and accurately estimate in a dynamic estuary system. The redistribution of microplastics may be impacted by complex tide processes. Although not observed in this study, it may merit investigation.


Subject(s)
Estuaries , Water Pollutants, Chemical , Water , Microplastics , Plastics , Environmental Monitoring , Water Pollutants, Chemical/analysis , China
9.
Sci Total Environ ; 805: 150243, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34534870

ABSTRACT

Marine microplastic (MP) pollution is a global environmental problem that has received attention from scientific researchers and the public for the past several decades. However, without a suitably large-volume sampling method, the presence of MPs in subsurface water (< 5 m) is poorly understood. Here, MP content in subsurface water was determined using a pump-underway ship intake system along the cross-oceanic transect from the Pearl River Estuary to the Indian Ocean. The study regions have always been considered as one of the major MPs hotspots in the global oceans and still lack of study. Generally, MP abundance ranged between 0 and 4.97 items m-3, with an overall mean value of 0.40 ± 0.62 items m-3. A total of 679 MP particles were identified using µ-FT-IR. These collections identified polyethylene (PE), polypropylene (PP), and polyester (PET) as the major polymers represented (73.14-88.81%). The presence of MPs in coastal regions was significantly higher than that in the open ocean, revealing the contribution of land-based sources to marine MPs and the ocean dynamics. Therefore, an effective and feasible way to retard the penetration of MPs into the marine environment is to exhibit controls at the source. No significant correlation was found between the MP abundance and the physical and chemical properties of water. The results of the analysis of similarities (ANOSIM) and non-metric multidimensional scaling (NMDS) also showed that MP communities in different environments were significantly greater than the differences in different sites within the same environment. These findings of this study provide reliable information on MP distribution and characterization in cross-oceanic region of South China Sea and Eastern Indian Ocean, which will help to improve our understanding about the fate of MPs in the ocean.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Environmental Monitoring , Indian Ocean , Plastics , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis
10.
J Hazard Mater ; 425: 127960, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34896726

ABSTRACT

Microplastic (MP) pollution is ubiquitous in the terrestrial and marine environments, even in the air. However, ecological risk assessment studies of microplastics are scarce. In the present study, an ecological risk assessment model was built to evaluate the risks of microplastics in the Yangtze River Estuary and adjacent marine areas. A basic index database of the impacts of MP pollution on the ecosystem was constructed around three types of indices, namely, the pressure, status, and response indices. While the expert scoring method was used to determine the weights of these indices, in view of the complexity of the ecosystem in the Yangtze River Estuary, the fuzzy comprehensive evaluation method was used to evaluate its ecological risk. According to the model, microplastic pollution in the Yangtze River Estuary and adjacent marine areas was within a lower risk state, indicating that its risks for the marine ecosystem were still within a controllable range.


Subject(s)
Microplastics , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Estuaries , Plastics/toxicity , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Sci Total Environ ; 849: 157702, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35908694

ABSTRACT

Atmospheric transport has been recognized as an important route for microplastics (MPs) entering the ocean since the early 2019s, yet little data of their distribution patterns in marine air are currently available. In this study, we conducted continuous measurements of atmospheric MPs in the marine boundary layer across the western Pacific Ocean. Results suggested that synthetic MPs comprised 25.89 % of all identified particles, with the most being cotton and cellulose (51.68 %). Research revealed that atmospheric synthetic microfibers (22.54 %) are higher than the proportion of the surface oceanic synthetic microfibers (8.20 %) in the recent study. Further, the size of airborne MP fibers over open ocean is probably not the limiting factor during long-range transport. The mean abundance of atmospheric MPs over the western Pacific Ocean during sampling period was 0.841 ± 0.698 items/100 m3. Regression analysis revealed an exponential relationship between average MP abundance and average longitude of sampled stations, and the average abundance of airborne MPs in coastal megacity is three orders of magnitude higher than that in sampled marine air of western Pacific. This study provides a better understanding on the impact of atmospheric transport of MPs within the global plastic cycle.


Subject(s)
Microplastics , Water Pollutants, Chemical , Cellulose , Environmental Monitoring/methods , Oceans and Seas , Plastics , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 806(Pt 4): 150767, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34619199

ABSTRACT

Atmospheric transport is an important pathway through which microplastics (MPs) are widely exchanged between marine and terrestrial environments. However, the impacts of frequent extreme weather events, such as typhoons, on atmospheric MPs is poorly understood. To address this issue, we collected suspended atmospheric MPs (SAMPs) and rainfall samples in the South China Sea during Typhoon Sinlaku (2020). Our results revealed a higher abundance of suspended MPs (1.05 ± 0.55 n/100 m3) during the typhoon than in the pre-typhoon period (0.59 ± 0.48 n/100 m3). Nine polymer types were identified by micro-FTIR, among which the dominant were polyethylene terephthalate (PET, 62.82%) and polypropylene (PP, 19.23%). Moreover, rainfall appeared more inclined to remove larger sizes, more colors and more polymer types of MPs from the atmosphere. The trajectory source-receptor plot indicated that the typhoon significantly changed the pathway of MP transport in the atmosphere, including the direction and distance. To our knowledge, this is the first study to elucidate the impact of typhoons on atmospheric MP transportation. Our results indicate that airborne MPs may pose unexpected ecological risks to marine and coastal ecosystems due to their increased abundance from more distant sources, resulting from typhoon events.


Subject(s)
Cyclonic Storms , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical/analysis
13.
J Colloid Interface Sci ; 606(Pt 1): 748-757, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34418755

ABSTRACT

Although solar energy is promising for water purification, there is still a room for further improving the solar steam generation efficiency. Herein, an environmental energy-enhanced solar steam evaporator is fabricated by immersing a cellulose acetate fiber-based cigarette filter (CF) in an aqueous solution of polyvinyl alcohol (PVA) followed by freeze-drying and decorating with MXene sheets. The presence of MXene is to absorb solar light and convert solar energy to thermal energy for efficient water evaporation, while the porous PVA network generated inside the pores of the filter during the freeze-drying process accommodates the dispersed MXene sheets and interconnects the CF and MXene. Because of the constructed PVA/MXene network inside the CF porous architecture and the hydrophilic feature of both MXene and PVA, the resultant MXene/PVA modified CF (MPCF) is highly hydrophilic and competent for rapid upward transfer of water. Interestingly, in addition to the normal energy input by the incident solar light, the large-area sidewall of MPCF gains thermal energy from the environment in the forms of heat convection and heat radiation to enhance the solar steam generation efficiency, resulting in an ultrahigh water evaporation rate of 3.38 kg m-2 h-1 with an outstanding evaporation efficiency of 132.9%.


Subject(s)
Steam , Tobacco Products , Cellulose/analogs & derivatives , Sunlight
14.
Mar Pollut Bull ; 171: 112914, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34488149

ABSTRACT

The environmental pollution caused by microplastics has received increasing attention recently. In this paper, we present the results of research into the bacterium attached to microplastics in four coastal mariculture zones in southeast China during winter and summer. Polyethene and polypropylene are the main microplastics in the surface water of mariculture area. The differences between the bacteria species composition found on the surface of microplastics in winter and summer were less than that found in the planktonic bacteria, indicating that biofilms protect the bacterium that live inside. Potentially pathogenic Vibrio and Pseudomonas spp. were more abundant in samples from ShanTou and QuanZhou during the summer. Bacteria related to the degradation of microplastics were found extensively on the surface of microplastics at all of the sampling sites. More attention should be paid to the risks resulting from the accumulation of harmful bacteria on microplastic surfaces during the summer.


Subject(s)
Microplastics , Water Pollutants, Chemical , Biofilms , China , Environmental Monitoring , Plastics , Seasons , Water Pollutants, Chemical/analysis
15.
Funct Plant Biol ; 48(6): 624-633, 2021 05.
Article in English | MEDLINE | ID: mdl-33648626

ABSTRACT

Lignin is one of the most valuable renewable industrial materials. To elucidate the mechanism via which lignin is synthesised, we compared the lignin content, leaf hardness, cell wall thickness of palisade tissue, and gene expression patterns of lignin biosynthetic enzymes in three tobacco (Nicotiana tabacum L.) varieties during maturation. The results consistently showed that during maturation, the accumulation of lignin gradually increased in tobacco leaves, reaching a peak at full maturity (45 days after topping), and then gradually decreased. Similarly, the transcript level analysis revealed that the gene expression pattern of NtPAL, NtC4H, NtCCoAOMT and NtCOMT were relatively high, and consistent with the lignin content changes. Thus, the four genes may play regulatory roles in the synthesis of tobacco lignin. Analysis of tissue expression patterns of the lignin synthesis-related gene showed that the NtPAL, NtC4H, Nt4CL, NtHCT, NtCCoAOMT, NtCOMT, NtCCR, NtCAD, and NtPAO were all expressed in stems, roots, and leaves. NtC3H and NtF5H were specifically expressed in stems and roots, and not in leaves. Consistently, the NtC3H promoter induced high GUS expression in stems and petioles, marginal in roots, and no GUS activity in leaves. These results provide insights into molecular regulation of lignin biosynthesis in tobacco.


Subject(s)
Lignin , Nicotiana , Gene Expression Regulation, Plant , Lignin/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Nicotiana/genetics
16.
Yao Xue Xue Bao ; 45(9): 1170-6, 2010 Sep.
Article in Zh | MEDLINE | ID: mdl-21351575

ABSTRACT

Ranolazine hydrochloride sustained-release tablet (RH-ST) was prepared and its release behavior in vitro was studied. The pharmacokinetic characteristics and bioavailability in six Beagle dogs after oral administration of RH-ST and ranolazine hydrochloride common tablets (RH-CT) as reference were compared. Three kinds of matrix, hydroxypropylmethylcellulose (HPMC K4M), ethylcellulose (EC 100cp) and acrylic resins (Eudragit RL100) were selected as functional excipients to keep ranolazine hydrochloride (RH) release for 12 hours. Through orthogonal designs, the polymers were quantified and the optimized cumulative release profile was obtained. The single oral dose of RH-ST 500 mg and RH-CT 333.3 mg was given to six dogs using a two way crossover design. Plasma levels were determined by LC-MS and the absorption fractions were calculated according to Loo-Riegelman formula. The steady-state concentration of RH in plasma of six dogs and its pharmacokinetics behaviors after continuous oral administration of RH-ST and RH-CT at different time intervals were studied by LC-MS. The steady-state pharmacokinetic parameters were computed by software program BAPP2.0. With the increase of the amount of the matrix, the drug release was decreased. The most important factor influencing drug release is the quantity of HPMC K4M. Drug release within the period (from 0 h to 12 h) fitted well into Higuchi model. The correlation coefficient (r) between the dissolution in vitro in release media of the distilled water and the absorptin fraction in vivo was 0.9550. To compare with RH-CT, RH-ST in vivo has a steady and slow release behavior, Tmax was obviously delayed (3.00 +/- 0.50) h and the relative bioavailability was over 80 percentage. The combined use of multiple polymers can decrease the tablet weight effectively, and the drug release rate can be decreased both in vitro and in vivo.


Subject(s)
Acetanilides/administration & dosage , Acetanilides/pharmacokinetics , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Acrylic Resins/chemistry , Administration, Oral , Animals , Area Under Curve , Biological Availability , Cellulose/analogs & derivatives , Cellulose/chemistry , Cross-Over Studies , Delayed-Action Preparations , Dogs , Excipients , Female , Hypromellose Derivatives , Male , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Ranolazine , Tablets
17.
Dent Mater ; 36(12): 1680-1690, 2020 12.
Article in English | MEDLINE | ID: mdl-33172605

ABSTRACT

OBJECTIVE: To evaluate color and whiteness changes of natural teeth under nine white LED illuminants recently proposed by CIE. METHODS: From spectral reflectance factors of 36 caries-free upper central incisors, corresponding colors under illuminant D65 and CIE 1931 standard colorimetric observer were computed for all tested illuminants, using the chromatic adaptation transform CAT16. Color differences (CIELAB and CIEDE2000 units) and whiteness (WID and WIO indices) from teeth illuminated by CIE standard illuminants (D65 and A) and white LED illuminants were calculated. The appearance of 630 pairs of teeth under all illuminants was also evaluated. RESULTS: Color gamuts from 36 teeth under tested illuminants showed similar volume and shape in CIELAB color space, but their centers of gravity changed in many different directions with respect to colors under D65 or A illuminants: Considering colors under D65/A, color shifts produced by white LED illuminants were in the ranges 2.0-8.6/1.1-7.0 CIELAB units (1.4-8.2/0.6-6.8 CIEDE2000 units). Average WID and WIO values for the 36 teeth under different illuminants ranged from -5.8 to +19.3 and from -7.7 to +11.1, respectively. Considering 630 pairs of teeth, average color differences (mainly lightness differences) were below 0.5 CIELAB units (0.3 CIEDE2000 units), and average whiteness differences ranged from 8.1 to 10.7 for WID (23.4-25.1 for WIO). SIGNIFICANCE: Using CIE LED illuminants, most changes in color and whiteness for individual teeth were above typical threshold values of perceptibility and acceptability in dentistry. However, considering pairs of teeth, the average color and whiteness differences under all tested illuminants were very similar.


Subject(s)
Color Perception , Colorimetry , Color , Incisor
18.
Yao Xue Xue Bao ; 43(6): 652-6, 2008 Jun.
Article in Zh | MEDLINE | ID: mdl-18822971

ABSTRACT

To prepare verapamil hydrochloride (VH) core-in-cup tablets with tri-layered tablet and four-layered tablet as core tablets, separately, which can provide biphasic release with double-pulsatile and multi-phasic release, core tablets were prepared by direct compression method, and core-in-cup tablets by dry-compression coated technology. The parameter, time-lag (T(lag)), was used to evaluate the influence of factors, such as the weight of the top cover layer, the amount of hydroxypropylmethylcellulose (HPMC), and the compression load on VH release. With the increase of the weight and HPMC amount of the top cover layer, the first lag time T(lag1) was prolonged. The second lag time T(lag2) of core-in-cup tablet with four-layered tablet as core tablet increased with the increasing amount of HPMC K100M. With the increase of compression load among the range (6 - 10 kg x cm(-2)), the two lag times were prolonged. Core-in-cup tablets with double-pulsatile and multi-phasic release released VH after the first lag time (4 -5 h), then kept sustained release for 12 h or 13 h, finally released rapidly. The drug in the core-in-cup tablet only released from the top cover layer. T(lag) is determined by the erosion rate of the inhibitor layers (the top cover layer and the sustained-release layer of the multi-layer core tablet).


Subject(s)
Drug Compounding/methods , Drug Delivery Systems , Methylcellulose/analogs & derivatives , Verapamil/administration & dosage , Delayed-Action Preparations , Drug Carriers , Excipients/chemistry , Hypromellose Derivatives , Methylcellulose/chemistry , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL