Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Macromol Rapid Commun ; 42(1): e2000446, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33108036

ABSTRACT

Hydrogels and polydimethylsiloxane (PDMS) are complementary to each other, since the hydrophobic PDMS provides a more stable and rigid substrate, while the water-rich hydrogel possesses remarkable hydrophilicity, biocompatibility, and similarity to biological tissues. Herein a transparent and stretchable covalently bonded PDMS-hydrogel bilayer (PHB) structure is prepared via in situ free radical copolymerization of acrylamide and allylamine-exfoliated-ZrP (AA-e-ZrP) on a functionalized PDMS surface. The AA-e-ZrP serves as cross-linking nano-patches in the polymer gel network. The covalently bonded structure is constructed through the addition reaction of vinyl groups of PDMS surface and monomers, obtaining a strong interfacial adhesion between the PDMS and the hydrogel. A mechanical-responsive wrinkle surface, which exhibs transparency change mechanochromism, is created via introducing a cross-linked polyvinyl alcohol film atop the PHB structure. A finite element model is implemented to simulate the wrinkle formation process. The implication of the present finding for the interfacial design of the PHB and PDMS-hydrogel-PVA trilayer (PHPT) structures is discussed.


Subject(s)
Dimethylpolysiloxanes , Hydrogels , Hydrophobic and Hydrophilic Interactions , Polymers , Polyvinyl Alcohol
2.
Int J Mol Sci ; 19(12)2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30477090

ABSTRACT

The terpolymerization of carbon dioxide (CO2), propylene oxide (PO), and cyclohexene oxide (CHO) were performed by both random polymerization and block polymerization to synthesize the random poly (propylene cyclohexene carbonate) (PPCHC), di-block polymers of poly (propylene carbonate⁻cyclohexyl carbonate) (PPC-PCHC), and tri-block polymers of poly (cyclohexyl carbonate⁻propylene carbonate⁻cyclohexyl carbonate) (PCHC-PPC-PCHC). The kinetics of the thermal degradation of the terpolymers was investigated by the multiple heating rate method (Kissinger-Akahira-Sunose (KAS) method), the single heating rate method (Coats-Redfern method), and the Isoconversional kinetic analysis method proposed by Vyazovkin with the data from thermogravimetric analysis under dynamic conditions. The values of ln k vs. T-1 for the thermal decomposition of four polymers demonstrate the thermal stability of PPC and PPC-PCHC are poorer than PPCHC and PCHC-PPC-PCHC. In addition, for PPCHC and PCHC-PPC-PCHC, there is an intersection between the two rate constant lines, which means that, for thermal stability of PPCHC, it is more stable than PCHC-PPC-PCHC at the temperature less than 309 °C and less stable when the decomposed temperature is more than 309 °C. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric analysis/infrared spectrometry (TG/FTIR) techniques were applied to investigate the thermal degradation behavior of the polymers. The results showed that unzipping was the main degradation mechanism of all polymers so the final pyrolysates were cyclic propylene carbonate and cyclic cyclohexene carbonate. For the block copolymers, the main chain scission reaction first occurs at PC-PC linkages initiating an unzipping reaction of PPC chain and then, at CHC⁻CHC linkages, initiating an unzipping reaction of the PCHC chain. That is why the T-5% of di-block and tri-block polymers were not much higher than that of PPC while two maximum decomposition temperatures were observed for both the block copolymer and the second one were much higher than that of PPC. For PPCHC, the random arranged bulky cyclohexane groups in the polymer chain can effectively suppress the backbiting process and retard the unzipping reaction. Thus, it exhibited much higher T-5% than that of PPC and block copolymers.


Subject(s)
Carbon Dioxide/chemistry , Cyclohexenes/chemistry , Epoxy Compounds/chemistry , Polymers/chemistry , Temperature , Gas Chromatography-Mass Spectrometry , Kinetics , Molecular Weight , Spectroscopy, Fourier Transform Infrared
3.
Int J Mol Sci ; 19(7)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30011782

ABSTRACT

The blends of Poly(propylene carbonate) (PPC) and polyester-based thermoplastic polyurethane (TPU) were melt compounded in an internal mixer. The compatibility, thermal behaviors, mechanical properties and toughening mechanism of the blends were investigated using Fourier transform infrared spectra (FTIR), tensile tests, impact tests, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic mechanical analysis technologies. FTIR and SEM examination reveal strong interfacial adhesion between PPC matrix and suspended TPU particles. Dynamic mechanical analyzer (DMA) characterize the glass transition temperature, secondary motion and low temperature properties. By the incorporation of TPU, the thermal stabilities are greatly enhanced and the mechanical properties are obviously improved for the PPC/TPU blends. Moreover, PPC/TPU blends exhibit a brittle-ductile transition with the addition of 20 wt % TPU. It is considered that the enhanced toughness results in the shear yielding occurred in both PPC matrix and TPU particles of the blends.


Subject(s)
Biodegradable Plastics/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Propane/analogs & derivatives , Calorimetry, Differential Scanning , Hydrogen Bonding , Microscopy, Electron, Scanning , Propane/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Tensile Strength
4.
J Biomed Mater Res A ; 108(8): 1634-1661, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32196913

ABSTRACT

Due to the excellent restoration of masticatory function, satisfaction on aesthetics and other superiorities, dental implants represent an effective method to resolve tooth losing and damaging. Current dental implant systems still have problems waiting to be addressed, and problems are centralized on the materials of implant bodies. This review aims to summarize major developments in the field of dental implant materials, starting with an overview on structures, procedures of dental implants and challenges of implant materials. Next, implant materials are examined in three categories, that is, metals, ceramics, and polymers, their mechanical properties, biocompatibility, and bioactivity are summarized. And as an important aspect, strategies of surface modification are also reviewed, along with some finite element analysis to guiding the research direction of implant materials. Finally, the conclusive remarks are outlined to provide an outlook on the future research directions and prospects of dental implants.


Subject(s)
Dental Implants , Dental Materials/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Dental Materials/therapeutic use , Finite Element Analysis , Humans , Materials Testing , Prosthesis Design
5.
ACS Appl Mater Interfaces ; 9(31): 25808-25817, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28704028

ABSTRACT

To effectively repair irregular shaped bone defects by a minimally invasive procedure, the exploration of an injectable gel to fill the defect is desirable. Herein, positively and negatively charged polyurethane microspheres (PU-A and PU-B) with adjustable zeta potentials as well as the hydroxyapatite-loaded PU microsphere (PU-A/HA) and the dexamethasone-loaded PU microsphere (PU-B/Dex) were successfully prepared, and the oppositely charged microspheres could self-assemble into injectable gels with 3D structures by a mutually electrostatic attraction. The self-assembly PU-A/HA+PU-B/Dex gel exhibited a much higher elastic modulus (about 0.20 MPa) and excellent shear-thinning and self-recovery behaviors, which would allow the gel to be injected through a fine syringe to fill the irregular defect. The in vitro and in vivo experiments demonstrated that the coexistence of HA and Dex in PU-A/HA+PU-B/Dex gel had a synergistic effect on cell differentiation and accelerating new bone formation, displaying a good prospect as an injectable gel for bone repair in minimally invasive surgery.


Subject(s)
Polyurethanes/chemistry , Bone and Bones , Dexamethasone , Durapatite , Microspheres
6.
ACS Appl Mater Interfaces ; 6(15): 13174-82, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25025228

ABSTRACT

Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.


Subject(s)
Biopolymers/chemistry , Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Sulfur/chemistry , Adsorption , Animals , Dielectric Spectroscopy , Electric Conductivity , Electrochemical Techniques , Electrochemistry , Electrodes , Nitrogen/chemistry , Particle Size , Porosity , Silk/chemistry , Temperature , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL