Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Vet Res ; 53(1): 24, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35313983

ABSTRACT

Circular RNAs (circRNAs) are a new type of endogenous noncoding RNA that exhibit a variety of biological functions. However, it is not clear whether they are involved in foot-and-mouth disease virus (FMDV) infection and host response. In this study, we established circRNA expression profiles in FMDV-infected PK-15 cells using RNA-seq (RNA-sequencing) technology analysis. The biological function of the differentially expressed circRNAs was determined by protein interaction network, Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment. We found 1100 differentially expressed circRNAs (675 downregulated and 425 upregulated) which were involved in various biological processes such as protein ubiquitination modification, cell cycle regulation, RNA transport, and autophagy. We also found that circRNAs identified after FMDV infection may be involved in the host cell immune response. RNA-Seq results were validated by circRNAs qRT-PCR. In this study, we analyzed for the first time circRNAs expression profile and the biological function of these genes after FMDV infection of host cells. The results provide new insights into the interactions between FMDV and host cells.


Subject(s)
Foot-and-Mouth Disease Virus , MicroRNAs , Animals , Foot-and-Mouth Disease Virus/genetics , Gene Expression Profiling/veterinary , Gene Ontology , MicroRNAs/genetics , RNA, Circular/genetics
2.
Front Vet Sci ; 9: 860978, 2022.
Article in English | MEDLINE | ID: mdl-35372527

ABSTRACT

Foot-and-mouth disease (FMD) is induced by FMD virus (FMDV) and characterized by fever and vesicular (blister-like) lesions. However, the exact composition of the vesicular fluid in pigs infected with FMDV remains unclear. To identify and analyze the components of the vesicular fluid in FMDV-infected domestic pigs, the fluid was collected and subjected to mass spectrometry. Further analyses were conducted using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG), and protein-protein interaction (PPI). Quantitative ELISA kit for TNF-α, and IFN-α, IFN-ß, IL-6, IL-10, IL-1ß, and IFN-γ were used to verify the mass spectrometry results. Results showed that 937 proteins were identified in the vesicular fluid from swine after FMDV infection, and bioinformatics analysis indicated that these proteins are related to the innate immune and inflammation pathways. The levels of cytokines involved in the disease-related pathways, tumor necrosis factors, and IL-6 in the fluid samples were significantly increased. This study identified and analyzed the composition of vesicular fluid in pigs after FMD infection for the first time and provided interesting information that help understand the infection and pathogenesis mechanism of FMD. These information will eventually contribute to the prevention and control of FMD.

3.
Int J Pharm ; 583: 119397, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32376443

ABSTRACT

Nanostructures and their related structure-performance relationships for "efficacious, safe and convenient" drug delivery are playing a more and more important role in the fast development of nanopharmaceutics. In this study, a core-shell fiber based nano depot (ND) is prepared for achieving a high drug loading and meanwhile ensuring a zero-order drug sustained release profile. With cellulose acetate (CA) as a filament-forming polymeric matrix and ferulic acid (FA) as a model drug, a triaxial electrospinning was implemented to generate the ND. An elaborate strategy was exploited to ensure a continuous, robust and effective preparation. The strategy comprised a solvent mixture as the outer fluid, a mixed solution containing FA and CA with a high CA concentration as the spinnable middle fluid, and a pure drug solution as the inner liquid for loading enough FA in the NDs as much as possible. TEM and SEM demonstrated the core-shell structure of NDs. The NDs had a drug loading of 71.5 ± 4.6%. The in vitro dissolution tests demonstrated that the loaded FA was able to release through a zero-order kinetics of Q (FA released percentage) to t (release time): Q = 12.03 + 1.89 t (R = 0.9928) during the 48 h. Only 3.6% of the loading FA was released during the late tailing-off period. Three different diffusion types about the drug sustained release mechanism are suggested.


Subject(s)
Cellulose/analogs & derivatives , Coumaric Acids/chemistry , Drug Carriers , Nanoparticles , Cellulose/chemistry , Delayed-Action Preparations , Diffusion , Drug Compounding , Drug Liberation , Kinetics , Models, Chemical , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL