Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Plant Physiol ; 192(3): 2015-2029, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36721923

ABSTRACT

As the main fungal etiologic agent of apple (Malus domestica) replant disease (ARD), Fusarium solani seriously damages apple roots. Ethylene response factors (ERFs) play an important role in plant resistance to biotic stress. Here, we show that MdERF114 is expressed during F. solani infections and positively regulates the resistance of apple roots to F. solani. Yeast one-hybrid, dual-luciferase, electrophoretic mobility shift assays and determinations of lignin content indicated that MdERF114 directly binds the GCC-box of the MdPEROXIDASE63 (MdPRX63) promoter and activates its expression, resulting in lignin deposition in apple roots and increased resistance to F. solani. We identified a WRKY family transcription factor, MdWRKY75, that binds to the W-box of the MdERF114 promoter. Overexpression of MdWRKY75 enhanced resistance of apple roots to F. solani. MdMYB8 interacted with MdERF114 to enhance resistance to F. solani by promoting the binding of MdERF114 to the MdPRX63 promoter. In summary, our findings reveal that the MdWRKY75-MdERF114-MdMYB8-MdPRX63 module is required for apple resistance to F. solani and the application of this mechanism by Agrobacterium rhizogenes-mediated root transformation provides a promising strategy to prevent ARD.


Subject(s)
Fusarium , Malus , Malus/metabolism , Lignin/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Small ; 19(27): e2300589, 2023 07.
Article in English | MEDLINE | ID: mdl-36970836

ABSTRACT

The advancement in thermosensitive active hydrogels has opened promising opportunities to dynamic full-thickness skin wound healing. However, conventional hydrogels lack breathability to avoid wound infection and cannot adapt to wounds with different shapes due to the isotropic contraction. Herein, a moisture-adaptive fiber that rapidly absorbs wound tissue fluid and produces a large lengthwise contractile force during the drying process is reported. The incorporation of hydroxyl-rich silica nanoparticles in the sodium alginate/gelatin composite fiber greatly improves the hydrophilicity, toughness, and axial contraction performance of the fiber. This fiber exhibits a dynamic contractile behavior as a function of humidity, generating ≈15% maximum contraction strain or ≈24 MPa maximum isometric contractile stress. The textile knitted by the fibers features excellent breathability and generates adaptive contraction in the target direction during the natural desorption of tissue fluid from the wounds. In vivo animal experiments further demonstrate the advantages of the textiles over traditional dressings in accelerating wound healing.


Subject(s)
Skin , Wound Healing , Animals , Skin/injuries , Bandages , Biopolymers , Hydrogels
3.
Nanomedicine ; 41: 102517, 2022 04.
Article in English | MEDLINE | ID: mdl-35032629

ABSTRACT

Mesenchymal stem cells (MSCs) are promising in idiopathic pulmonary fibrosis (IPF) therapy. However, low survival rate and ambiguous behavior of MSCs after transplantation impede their clinical translation. To this end, we have developed a new strategy to improve the survival rate and monitor the behavior of the transplanted MSCs simultaneously. In our strategy, nintedanib, a tyrosine kinase inhibitor, is employed to protect the human MSCs (hMSCs) from excessive oxidative stress responses and inflammatory environment in the damaged lung. Moreover, by labeling of the transplanted hMSCs with a computed tomography (CT) nanotracer, Au nanoparticles functionalized with polyethylenimine (PEI) and polyethylene glycol (PEG) (Au@PEI@PEG), in combination with red-emitting firefly luciferase (RfLuc), in vivo CT/bioluminescence (BL) dual-modal imaging tracking of the location, distribution, and survival of the transplanted hMSCs in presence of nintedanib were achieved, which facilitates the profound understanding of the role the stem cells play in IPF therapy.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mesenchymal Stem Cells , Metal Nanoparticles , Gold , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/drug therapy , Indoles , Luciferases, Firefly , Metal Nanoparticles/therapeutic use , Polyethylene Glycols , Polyethyleneimine , Tomography, X-Ray Computed
4.
Nanomedicine ; 33: 102358, 2021 04.
Article in English | MEDLINE | ID: mdl-33484882

ABSTRACT

Virus-like particle (VLP) vaccines have become one of the dominant vaccine candidates for foot-and-mouth disease (FMD). To further enhance the immunogenicity of VLP vaccines, gold nanocages (AuNCs) were selected as an adjuvant for the vaccine. Our experiments demonstrated that AuNCs had little biotoxicity in vivo and in vitro and improved the uptake of VLP in BHK-21 and RAW264.7 cell lines. The VLP-AuNCs activated DCs mainly through toll-like receptor 4 (TLR4) and promoted the secretion of IL-6, IL-1ß, and TNF-α. The conjugation of VLP and AuNCs triggered a strong immune response against FMD virus (FMDV) in mice and guinea pigs. The VLP-AuNCs significantly enhanced the proliferation of CD8+ T cells (P < 0.05) and the secretion of cellular immune-related cytokines (IFN-γ, P < 0.05; IL-12p70, P < 0.01) compared with VLP. The present study demonstrated that AuNCs, as a great potential adjuvant for FMDV VLP vaccines, significantly enhance the immune response.


Subject(s)
Adjuvants, Immunologic/chemistry , Drug Carriers/chemistry , Foot-and-Mouth Disease/prevention & control , Gold/chemistry , Metal Nanoparticles/chemistry , Vaccines, Virus-Like Particle/chemistry , Viral Vaccines/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Biomedical Enhancement , CD8-Positive T-Lymphocytes , Cell Membrane Permeability , Cell Proliferation , Cytokines/metabolism , Drug Compounding , Drug Liberation , Female , Foot-and-Mouth Disease Virus , Guinea Pigs , Mice , Mice, Inbred BALB C , Neutralization Tests , RAW 264.7 Cells , Vaccines, Virus-Like Particle/pharmacology , Viral Vaccines/pharmacology
5.
J Nanosci Nanotechnol ; 18(4): 2286-2293, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29442894

ABSTRACT

Delivery of functional genes into stem cells shows great application prospect in DNA-based tissue engineering. However, comparing with epithelial cells and cancer cells, stem cells usually exhibit low gene transfection efficiency. To enhance the transfection efficiency, non-viral gene delivery in combination with biomaterial scaffolds, has raised increasing interests from researchers in tissue engineering. Nanofibers fabricated by electrospinning technique mimicking extracellular matrix (ECM) are widely used in tissue engineering applications. In addition, graphene oxide (GO) with ultrahigh specific surface area and ultra-strong adsorption capability, is an ideal candidate for gene delivery. In this work, polyethylenimine (PEI)/plasmid DNA-GO/poly(D,L-lactic-co-glycolic acid) (PLGA) scaffold was developed as a substrate for solid phase gene delivery and a tissue engineering substrate for stem cells growth and differentiation. In order to improve the transfection efficiency of stem cells, PEI/pDNA complexes were immobilized at the surface of electropun GO incorporated PLGA nanofibrous mat. Human embryonic kidney 293 cells and human umbilical cord derived mesenchymal stem cells cultured on PEI/pDNA-GO/PLGA scaffold showed significantly higher green fluorescent protein (GFP) expression than PEI/pGFP in the medium. These findings demonstrated that solid phase gene delivery using PEI/pDNA-GO/PLGA significantly enhanced the gene transfection efficiency, and may find potential application of gene therapy and regeneration medicine.


Subject(s)
Gene Transfer Techniques , Lactic Acid , Mesenchymal Stem Cells , Polyglycolic Acid , Tissue Scaffolds , Graphite , Humans , Nanofibers , Oxides , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Transfection
6.
J Nanosci Nanotechnol ; 16(3): 2210-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455620

ABSTRACT

Gene therapy is a promising strategy in cancer treatment. However, efficient gene translation still remains challenging. In the previous work, a hydrolytically degradable poly(aminoester) with good biocompatibility was synthesized. Herein, the poly(aminoester) was explored as a vector for gene delivery and cancer therapy. The experiments revealed that the poly(aminoester) condensed plasmid DNA into nanosized particles via electrostatic interaction. The pEGFP-N1 and pGL-3 were first used as two reporter genes to study intracellular transfection. The poly(aminoester) showed higher GFP expression (33%) than PEI 25 kDa (21%). Intracellular trafficking of Cy3-labelled pGL-3 also indicated that the poly(aminoester) showed superior DNA delivery ability to nucleus compared to PEI 25 kDa. Furthermore, the therapeutic gene (p53) was translated into the breast cancer cell line (MCF-7), and then induced cell apoptosis. These results suggested that the degradable poly(aminoester) is a promising and efficient gene delivery vector for gene therapeutic applications.


Subject(s)
Amines/chemistry , Biocompatible Materials , Genes, p53 , Genetic Therapy , Neoplasms/therapy , Polyesters/chemistry , Apoptosis , Cell Line, Tumor , Humans , Neoplasms/pathology
7.
J Sep Sci ; 37(23): 3579-86, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25229520

ABSTRACT

In the study, four different semiempirical algorithms, modified neglect of diatomic overlap, a reparameterization of Austin Model 1, complete neglect of differential overlap and typed neglect of differential overlap, have been applied for the energy optimization of template, monomer, and template-monomer complexes of imprinted polymers. For phosmet-, estrone-, and metolcarb-imprinted polymers, the binding energies of template-monomer complexes were calculated and the docking configures were assessed in different molar ratio of template/monomer. It was found that two algorithms were not suitable for calculating the binding energy in template-monomers complex system. For the other algorithms, the obtained optimum molar ratio of template and monomers were consistent with the experimental results. Therefore, two algorithms have been selected and applied for the preparation of enrofloxacin-imprinted polymers. Meanwhile using a different molar ratio of template and monomer, we prepared imprinted polymers and nonimprinted polymers, and evaluated the adsorption to template. It was verified that the experimental results were in good agreement with the modeling results. As a result, the semiempirical algorithm had certain feasibility in designing the preparation of imprinted polymers.


Subject(s)
Polymers/chemical synthesis , Adsorption , Algorithms , Models, Chemical , Molecular Imprinting , Polymers/chemistry
8.
Front Bioeng Biotechnol ; 12: 1356580, 2024.
Article in English | MEDLINE | ID: mdl-38456006

ABSTRACT

Tooth loss or damage poses great threaten to oral and general health. While contemporary clinical treatments have enabled tooth restoration to a certain extent, achieving functional tooth regeneration remains a challenging task due to the intricate and hierarchically organized architecture of teeth. The past few decades have seen a rapid development of three-dimensional (3D) printing technology, which has provided new breakthroughs in the field of tissue engineering and regenerative dentistry. This review outlined the bioactive materials and stem/progenitor cells used in dental regeneration, summarized recent advancements in the application of 3D printing technology for tooth and tooth-supporting tissue regeneration, including dental pulp, dentin, periodontal ligament, alveolar bone and so on. It also discussed current obstacles and potential future directions, aiming to inspire innovative ideas and encourage further development in regenerative medicine.

9.
Biomed Mater ; 19(4)2024 May 07.
Article in English | MEDLINE | ID: mdl-38653259

ABSTRACT

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Subject(s)
Decellularized Extracellular Matrix , Dental Pulp , Proteomics , Tissue Engineering , Tissue Scaffolds , Dental Pulp/cytology , Proteomics/methods , Animals , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Sodium Dodecyl Sulfate/chemistry , Humans , Odontogenesis , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry
10.
Nanoscale ; 16(3): 1320-1330, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38131293

ABSTRACT

The utilization of metal nanoparticles for antibacterial thermoplastic composites has the potential to enhance the safety of human and animal life by mitigating the spread and transmission of foodborne pathogenic bacteria. The dispersion, antioxidant and antimicrobial activities of metal nanoparticles directly affect the application performance of the composites. This study focused on achieving amine-carboxyl co-modified copper nanoparticles (Cu-AC) with excellent antioxidant properties and monodispersity through in situ grafting of amine and carboxyl groups onto the surface of copper nanoparticles via ligand interaction. Polyacrylic acid's extended carbon chain structure was utilized to improve its dispersion and antioxidant properties, and its antibacterial properties were synergistically enhanced using secondary amines. It was found that Cu-AC possesses high antibacterial properties, with a minimum inhibition concentration of 0.156 mg mL-1. Antibacterial masterbatches and their composites (polypropylene/Cu) manufactured by melt blending of polypropylene and Cu-AC exhibited excellent antibacterial rates of up to 90% and 99% at 300 ppm and 700 ppm Cu-AC, respectively. Additionally, Cu-AC bolstered the thermal degradation, processing and mechanical properties of polypropylene. The successful implementation of this product substantiates the potential applications of polypropylene/Cu composite materials across diverse industries.


Subject(s)
Copper , Metal Nanoparticles , Animals , Humans , Copper/pharmacology , Copper/chemistry , Antioxidants , Polypropylenes , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Amines
11.
Biofabrication ; 16(4)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914075

ABSTRACT

Accurate reproduction of human intestinal structure and functionin vitrois of great significance for understanding the development and disease occurrence of the gut. However, mostin vitrostudies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization foundin vivo. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with invivo-likering folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.


Subject(s)
Bioprinting , Capillaries , Human Umbilical Vein Endothelial Cells , Intestines , Printing, Three-Dimensional , Humans , Caco-2 Cells , Capillaries/cytology , Intestines/cytology , Tissue Engineering , Alginates/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Intestinal Mucosa/cytology , Gelatin/chemistry
12.
Gels ; 9(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36975694

ABSTRACT

Tissue regeneration and remineralization in teeth is a long-term and complex biological process, including the regeneration of pulp and periodontal tissue, and re-mineralization of dentin, cementum and enamel. Suitable materials are needed to provide cell scaffolds, drug carriers or mineralization in this environment. These materials need to regulate the unique odontogenesis process. Hydrogel-based materials are considered good scaffolds for pulp and periodontal tissue repair in the field of tissue engineering due to their inherent biocompatibility and biodegradability, slow release of drugs, simulation of extracellular matrix, and the ability to provide a mineralized template. The excellent properties of hydrogels make them particularly attractive in the research of tissue regeneration and remineralization in teeth. This paper introduces the latest progress of hydrogel-based materials in pulp and periodontal tissue regeneration and hard tissue mineralization and puts forward prospects for their future application. Overall, this review reveals the application of hydrogel-based materials in tissue regeneration and remineralization in teeth.

13.
Cancer Gene Ther ; 30(11): 1554-1568, 2023 11.
Article in English | MEDLINE | ID: mdl-37582934

ABSTRACT

Acquired platinum resistance poses a significant therapeutic impediment to ovarian cancer patient care, accounting for more than 200,000 deaths annually worldwide. We previously identified that overexpression of the antioxidant superoxide dismutase 1 (SOD1) in ovarian cancer is associated with a platinum-resistant phenotype via conferring oxidative stress resistance against platinum compounds. We further demonstrated that enzymatic inhibition using small-molecule inhibitors or silencing of SOD1 via RNA interference (RNAi) increased cisplatin sensitivity and potency in vitro. We launched this study to explore the potential therapeutic applications of SOD1 silencing in vivo in order to reverse cisplatin resistance using a graphene-based siRNA delivery platform. PEGylated graphene oxide (GO) polyethyleneimine (GOPEI-mPEG) nanoparticle was complexed with SOD1 siRNA. GOPEI-mPEG-siSOD1 exhibited high biocompatibility, siRNA loading capacity, and serum stability, and showed potent downregulation of SOD1 mRNA and protein levels. We further observed that cisplatin and PEI elicited mitochondrial dysfunction and transcriptionally activated the mitochondrial unfolded protein response (UPRmt) used as a reporter for their respective cytotoxicities. SOD1 silencing was found to augment cisplatin-induced cytotoxicity resulting in considerable tumour growth inhibition in cisplatin-sensitive A2780 and cisplatin-resistant A2780DDP subcutaneous mouse xenografts. Our study highlights the potential therapeutic applicability of RNAi-mediated targeting of SOD1 as a chemosensitizer for platinum-resistant ovarian cancers.


Subject(s)
Antineoplastic Agents , Graphite , Nanoparticles , Ovarian Neoplasms , Humans , Female , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , RNA Interference , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/therapeutic use , Graphite/metabolism , Graphite/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Polyethylene Glycols , RNA, Small Interfering/genetics , Carcinoma, Ovarian Epithelial/genetics
14.
J Periodontol ; 94(2): 263-276, 2023 02.
Article in English | MEDLINE | ID: mdl-35912965

ABSTRACT

BACKGROUND: Although researchers have been exploring therapeutic strategies of treating serious periodontal tissue loss, including the application of stem cells, tissue regeneration of the periodontal complex involving cementum, periodontium, and alveolar bone has hardly been achieved. Aiming at tackling the problem of severely damaged periodontal complex, it is worth trying to make advantages of Hertwig's epithelial root sheath (HERS) cells to tissue regeneration mimicking the physiological developmental process with their ability of cementum, bone, and periodontium formation. METHODS: HERS cells and dental follicle cells (DFCs) were acquired from Sprague Dawley rats' molar germs and identified by immunofluorescence. Alizarin red assay, ALP staining, AKP test, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were conducted to confirm the osteogenic potential, epithelial-mesenchymal transition (EMT) character of harvested HERS cells and epithelial-mesenchymal interaction (EMI) with DFCs. An animal model of periodontal defect was constructed to testify the tissue regeneration ability in vivo. Micro-CT and histological examinations were interpreted to unveil the tissue repair outcomes. RESULTS: HERS cells expressed strong epithelial cell markers CK14 and E-cadherin. The in vitro experiments overall showed the concretely enhanced osteogenic differentiation ability in either HERS group or HERS+DFC group. Meanwhile, the in vivo conduction of rat mandibular periodontal repair experiment showed regenerative effectiveness of periodontal complex structure in both HERS and HERS+DFC group in situ, testified by Micro-CT and histological analysis. CONCLUSIONS: HERS cells show potential for periodontal tissue regeneration which suggests the future possibilities of being considered as one of the cell choices for severely damaged periodontal tissue repair.


Subject(s)
Osteogenesis , Tooth Root , Rats , Animals , Rats, Sprague-Dawley , Dental Cementum , Periodontium , Cell Differentiation/physiology , Epithelial Cells
15.
Adv Healthc Mater ; 12(28): e2300625, 2023 11.
Article in English | MEDLINE | ID: mdl-37523260

ABSTRACT

Recent advances in 3D printing offer a prospective avenue for producing transplantable human tissues with complex geometries; however, the appropriate 3D-printed scaffolds possessing the biological compatibility for tooth regeneration remain unidentified. This study proposes a personalized scaffold of multiple bioactivities, including induction of stem cell proliferation and differentiation, biomimetic mineralization, and angiogenesis. A brand-new bioink system comprising a biocompatible and biodegradable polymer is developed and reinforced with extracellular matrix generated from dentin tissue (treated dentin matrix, TDM). Adding TDM optimizes physical properties including microstructure, hydrophilicity, and mechanical strength of the scaffolds. Proteomics analysis reveals that the released proteins of the 3D-printed TDM scaffolds relate to multiple biological processes and interact closely with each other. Additionally, 3D-printed TDM scaffolds establish a favorable microenvironment for cell attachment, proliferation, and differentiation in vitro. The 3D-printed TDM scaffolds are proangiogenic and facilitate whole-thickness vascularization of the graft in a subcutaneous model. Notably, the personalized TDM scaffold combined with dental follicle cells mimics the anatomy and physiology of the native tooth root three months after in situ transplantation in beagles. The remarkable in vitro and in vivo outcomes suggest that the 3D-printed TDM scaffolds have multiple bioactivities and immense clinical potential for tooth-loss therapy.


Subject(s)
Regeneration , Tissue Scaffolds , Dogs , Humans , Animals , Tissue Scaffolds/chemistry , Prospective Studies , Cells, Cultured , Printing, Three-Dimensional , Tissue Engineering
16.
Nanotoxicology ; 17(5): 432-448, 2023 06.
Article in English | MEDLINE | ID: mdl-37724376

ABSTRACT

Recent years, cardiac vascular disease has arisen owing to acute myocardial infarction (MI) and heart failure leading to death worldwide. Various treatments are available for MI in modern medicine such as implantation of devices, pharmaceutical therapy, and transplantation of organs, nonetheless, it has many complications in finding an organ donor, devices for stenosis, high intrusiveness and long-time hospitalization. To overcome these problems, we have designed and developed a novel hydrogel material with a combination of Se NPs loaded poly(ethylene glycol)/tannic acid (PEG/TA) hydrogel for the treatment of acute MI repair. Herein, Se NPs were characterized by effective analytical and spectroscopic techniques. In vitro cell compatibility and anti-oxidant analyses were examined on human cardiomyocytes in different concentrations of Se NPs and appropriate Se NPs loaded hydrogel samples to demonstrate its greater suitability for in vivo cardiac applications. In vivo investigations of MI mice models injected with Se hydrogels established that LV wall thickness was conserved significantly from the value of 235.6 µm to 390 µm. In addition, the relative scar thickness (33.6%) and infarct size (17.1%) of the MI model were enormously reduced after injection of Se hydrogel when compared to the Se NPs and control (MI) sample, respectively, which confirmed that Se introduced hydrogel have greatly influenced on the restoration of the infarcted heart. Based on the investigated results of the nanoformulation samples, it could be a promising material for future generations treatment of acute myocardial infarction and cardiac repair applications.


HighlightsDesign of novel combination of Se NPs loaded poly(ethylene glycol)/tannic acid conductive hydrogelThe prepared material provides favourable cell compatibility and anti-oxidant abilitiesHydrogel samples significantly influenced In vitro pro- and anti-inflammatory behavioursIt could be developed hydrogel promises of outstanding efficiency for the treatment of acute myocardial infarction.


Subject(s)
Hydrogels , Myocardial Infarction , Mice , Humans , Animals , Myocardial Infarction/drug therapy , Myocytes, Cardiac , Polyethylene Glycols/therapeutic use , Polyethylene Glycols/chemistry
17.
J Neuroinflammation ; 9: 136, 2012 Jul 09.
Article in English | MEDLINE | ID: mdl-22721162

ABSTRACT

BACKGROUND: Neuropathic pain in the trigeminal system is frequently observed in clinic, but the mechanisms involved are largely unknown. In addition, the function of immune cells and related chemicals in the mechanism of pain has been recognized, whereas few studies have addressed the potential role of chemokines in the trigeminal system in chronic pain. The present study was undertaken to test the hypothesis that chemokine C-C motif ligand 2 (CCL2)-chemokine C-C motif receptor 2 (CCR2) signaling in the trigeminal nucleus is involved in the maintenance of trigeminal neuropathic pain. METHODS: The inferior alveolar nerve and mental nerve transection (IAMNT) was used to induce trigeminal neuropathic pain. The expression of ATF3, CCL2, glial fibrillary acidic protein (GFAP), and CCR2 were detected by immunofluorescence histochemical staining and western blot. The cellular localization of CCL2 and CCR2 were examined by immunofluorescence double staining. The effect of a selective CCR2 antagonist, RS504393 on pain hypersensitivity was checked by behavioral testing. RESULTS: IAMNT induced persistent (>21 days) heat hyperalgesia of the orofacial region and ATF3 expression in the mandibular division of the trigeminal ganglion. Meanwhile, CCL2 expression was increased in the medullary dorsal horn (MDH) from 3 days to 21 days after IAMNT. The induced CCL2 was colocalized with astroglial marker GFAP, but not with neuronal marker NeuN or microglial marker OX-42. Astrocytes activation was also found in the MDH and it started at 3 days, peaked at 10 days and maintained at 21 days after IAMNT. In addition, CCR2 was upregulated by IAMNT in the ipsilateral medulla and lasted for more than 21 days. CCR2 was mainly colocalized with NeuN and few cells were colocalized with GFAP. Finally, intracisternal injection of CCR2 antagonist, RS504393 (1, 10 µg) significantly attenuated IAMNT-induced heat hyperalgesia. CONCLUSION: The data suggest that CCL2-CCR2 signaling may be involved in the maintenance of orofacial neuropathic pain via astroglial-neuronal interaction. Targeting CCL2-CCR2 signaling may be a potentially important new treatment strategy for trigeminal neuralgia.


Subject(s)
Chemokine CCL2/physiology , Neuralgia/metabolism , Posterior Horn Cells/metabolism , Receptors, CCR2/physiology , Trigeminal Neuralgia/metabolism , Animals , Male , Mice , Neuralgia/immunology , Neuralgia/pathology , Posterior Horn Cells/pathology , Signal Transduction/immunology , Trigeminal Neuralgia/immunology , Trigeminal Neuralgia/pathology
18.
Macromol Biosci ; 22(9): e2200181, 2022 09.
Article in English | MEDLINE | ID: mdl-35778775

ABSTRACT

The development of 3D bioprinting has been hindered by a narrow "biofabrication window" with a limited variety of feasible bioinks which are compatible with both high printability and well cytocompatibility. Herein, a generalizable strategy using complementary polymer network (CPN) bioinks is developed in the current study, to address the conflict between the printability and cytocompatibility of bioinks in extrusion 3D bioprinting, especially for the manufacture of soft tissue constructs. In this strategy, CPN bioinks are formed though mixing two interpenetrated polymer networks, one of which is a photocrosslinkable polymer network, and the other is a dynamic polymer network crosslinked by reversible covalent linkage, thereby endowed with well reversible thixotropy. Compatible with well printability, shape fidelity, and cytocompatibility, the utilization of CPN bioinks provides a viable solution for extrusion 3D bioprinting of photocrosslinkable biomaterials at a low concentration, thus suitable for soft tissue construct fabrication. Briefly, this study is testified to be a successful attempt to extend the bioink diversity within the "biofabrication window," and offers a novel insight into designing more feasible bioinks based on their special rheological properties, for further tissue engineering and biomedicine application.


Subject(s)
Bioprinting , Biocompatible Materials , Polymers , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
19.
Pharmaceutics ; 15(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36678720

ABSTRACT

Tissue engineering is a new therapeutic strategy used to repair serious damage caused by trauma, a tumor or other major diseases, either for vital organs or tissues sited in the oral cavity. Scaffold materials are an indispensable part of this. As an extracellular-matrix-based bio-material, treated dentin matrixes have become promising tissue engineering scaffolds due to their unique natural structure, astonishing biological induction activity and benign bio-compatibility. Furthermore, it is important to note that besides its high bio-activity, a treated dentin matrix can also serve as a carrier and release controller for drug molecules and bio-active agents to contribute to tissue regeneration and immunomodulation processes. This paper describes the research advances of treated dentin matrixes in tissue regeneration from the aspects of its vital properties, biologically inductive abilities and application explorations. Furthermore, we present the concerning challenges of signaling mechanisms, source extension, individualized 3D printing and drug delivery system construction during our investigation into the treated dentin matrix. This paper is expected to provide a reference for further research on treated dentin matrixes in tissue regeneration and better promote the development of relevant disease treatment approaches.

20.
Proc Inst Mech Eng H ; 236(12): 1732-1743, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36285396

ABSTRACT

The dental implant is challenging due to the unstable quality of the surrounding bone. This study aimed to explore the feasibility of using thrust force characteristics to identify different bone types and the influencing mechanisms of spindle speed and feed rate on primary stability of dental implants through in-vitro experiments. 13 groups of osteotomy experiments were performed on mandibles and maxillae of pigs with different bone types (I, II, and III) under different spindle speeds (600 and 800 rpm) and feed rates (20 and 60 mm/min). The thrust force evolution under different conditions was extracted and analysed to elaborate the distribution and thickness of the cortical and trabecular bone layers on different bone types. Dental implant placements were performed, and corresponding primary stabilities were obtained. Furthermore, histologic observation was conducted to reveal the bone/implant contact morphology. From the results, the amplitude and trend of thrust force show a regular variation during drilling different bone types. The highly dynamic information of thrust force can be analysed to characterise the distribution and thickness of the cortical and trabecular bone layers, hence effectively detecting different bone types. Since a lower feed rate and resulting bone temperature elevation lead to more thermal damages, primary stability decreases with the decrease of feed rate. Spindle speed has no significant effect. This study establishes a more in-depth understanding into the thrust force evolution and also provide a clinical option for reducing the complexity of bone type and drilling parameters determination in osteotomy.


Subject(s)
Dental Implants , Swine , Animals , Mechanical Phenomena , Osteotomy , Mandible/surgery , Dental Implantation
SELECTION OF CITATIONS
SEARCH DETAIL